
Angela Mincemoyer Structural Option Advisor: Dr. Boothby Peggy Ryan Williams Center Ithaca, New York 9 April 2014

Peggy Ryan Williams Center

Final Report

Structural

PRIMARY PROJECT TEAM:

Owner | Ithaca College Architect | Holt Architects Structural Engineer | Ryan-Biggs Associates Mechanical & Electrical Engineer | Delta Engineers General Contractor | Christa Construction

ARCHITECTURE:

- Various aspects were driven by desire to be ecofriendly
- · Large areas of glass provide views of Cayuga Lake
- Façade consists of zinc panels, blue stone veneer, composite aluminum panels, and limestone panels
- Pedestrian bridge connects PRWC to adjacent building

STRUCTURE:

- Foundation
 - Slab-on-grade, foundation walls, footings, various grade beams, piers and drilled piers
- Framing System
 - All floors are composed of composite steel decking
 - Steel framing consists of wide flange beams, girders, and columns
- Lateral System
 - Concentrically braced structural steel frames in both the North-South and East-West directions

GENERAL BUILDING DATA:

Building Occupant | Ithaca College Occupancy | Office Use Size | 58,200 gross square feet Stories | 4 stories above grade Substantial Completion | March 2010 Cost of Construction | approx. \$19.3 million Project Delivery Method | Design-Bid-Build

SUSTAINABILITY:

- Awarded LEED Platinum
- "V" shaped roof aids in rain water collection
- Day lighting made possible by large areas of glass
- Intensive Green Roof
- Atrium promotes natural ventilation

MEP:

- Mechanical
 - Main heating and cooling source is geothermal via a closed loop system adjacent to the building
 - Two dedicated outdoor air units (DOA) will utilize water to water heat pumps
- Electrical
 - Primary Service: 12.5 KV primary fused switches, 500 KVA transformer, 480/277 Volt Distribution Switchboard
 - Secondary Distribution: 150 KVA, 480V to 120/208 Volt transformer and (1) 120/208 Volt Main power panel
- Plumbing
 - Collect and store rainwater for gray water use
 - (3) rainwater collections tanks

ANGELA MINCEMOYER

STRUCTURAL

http://www.engr.psu.edu/ae/thesis/portfolios/2014/ahm5066/index.html

Table of Contents

Executive Summary
Acknowledgements
Building Introduction7
Structural Overview of the Building
Materials9
Geotechnical Report and Recommendations9
Foundation System10
Gravity System
Lateral System13
Structural Overview of the Pedestrian Bridge16
Foundation and Columns16
Structural Framing16
Problem Statement
Proposed Solution17
Breadth Topics
Architectural Breadth – Bridge Façade Redesign18
Lighting Breadth – Exterior Lighting of the Bridge18
Structural Depth
Gravity System of the Building19
Lateral System of the Building23
Gravity System of the Pedestrian Bridge
Architectural Breadth – Bridge Façade Redesign
Initial Sketches
Truss Design
Gable Roof
Façade Diamond Design
Materials Chosen
Façade Comparison
Architectural Breadth Conclusion
Lighting Breadth – Exterior Lighting of the Bridge41
Conclusion43
References
Appendix A.1: Snow Drift
Appendix A.2: Framing Layouts

Final Report

Appendix A.3: Girder Designs	54
Appendix A.4: spBeam Output for Girders	57
Appendix A.5: Assumed Column Loads From Above	71
Appendix A.6: spBeam Output	73
Appendix A.7: Load to Apply to Level 1 Columns	76
Appendix A.8: Column Designs	79
Appendix A.9: spColumn Output	
Appendix B.1: Lateral Load Calculations	
Appendix B.2: Determination of Frame Stiffness's	
Appendix B.3: Center of Mass and Center of Rigidity	
Appendix B.4: Wind Load Cases	
Appendix B.5: Column Lateral Loadings to be Used in spColumn Analysis	
Appendix B.6: spColumn Output for Final Column Designs	
Appendix B.7: Beam-Column Interaction Calculations	
Appendix C.1: Gravity Loads on the Bridge	
Appendix C.2: Determination of Panel Point Loads	
Appendix C.3: Panel Point Loads	
Appendix C.4: Panel Point Load Combinations	
Appendix C.5: Member Indices	
Appendix C.6: Conversion of Indices to Member Forces	
Appendix C.7: Method of Joints	
Appendix C.8: Member Design	
Appendix D.1: Bridge Trusses	
Appendix E.1: Luminaire Specification Sheet	

Executive Summary

The Peggy Ryan Williams Center houses Ithaca College's admissions staff as well as numerous administrative offices at its location in Ithaca, New York. The building is an important feature of the college because it was intended to show its occupants and visitors that Ithaca College was moving forward and working to be more sustainable with their designs. Many of the architectural features of the building were influenced by the desire to be more "green" and to allow its occupants to view the nature around them. The existing building is a composite steel design with concentrically braced structural steel frames.

The following report consists of two main parts, the existing system and the redesigned system of the PRWC. The first section of the report explains some of the architectural and structural aspects of the building. The second portion of the report contains the details of the redesign of the existing steel building into a reinforced concrete building. In addition to presenting the existing and redesigned building, the pedestrian bridge, which is attached to the building, is also explained in detail. The bridge connects the PRWC to the adjacent Dillingham Center.

The first part of the redesign consisted of redesigning the gravity system of the building. One of the reasons that steel was originally chosen for the building material was due to a need to expedite the project schedule. However, a scenario was created in which the schedule was no longer critical. Therefore, the PRWC was redesigned using reinforced concrete. It was determined to complete the redesign using a one way concrete slab system with pan joists, girders, and columns. By using joists, the slab would only be required to span the small distance between the joists, thus allowing for a smaller slab depth. Therefore, it was hoped to decrease the original floor system depth. By orienting the joists along the existing steel beam span and then placing the concrete girders where the existing steel girders are located, the column locations would not need to be changed, thus the impact on the architecture would be low. By redesigning the building using concrete, the steel braced frames were no longer the best option. Since the building is only four stories, there was potential that the building's gravity system would double as its lateral system.

In addition to the redesign of the main building, a portion of the pedestrian bridge was also redesigned. Two inspirational concepts were considered for the redesign, a reflection on the building's original name, "The Gateway Building," and a reflection of New York's historical covered bridges. Upon choosing an inspiration to use for the redesign, one of the side trusses of the bridge was redesigned. This structural redesign led to both an architectural breadth on the façade of the pedestrian bridge and a lighting breadth of the exterior of the bridge.

Through the redesign, the floor system depth was decreased by changing the building material to concrete. This helped to open up the interior spaces and allow for a larger floor to ceiling height. The number of columns and girders in the building was decreased, which allowed for a more open floor plan. Finally, it was determined that the gravity system of the building was adequate to act as both the gravity system and the lateral system of the building.

Acknowledgements

I would first like to thank Ithaca College for allowing me to study the Peggy Ryan Williams Center this year. I would also like to thank Ryan-Biggs Associates and Holt Architects for providing to me the necessary information to complete this project.

None of this work would have been possible without the entire PSU AE Faculty. Thank you all for passing some of your knowledge onto me. I would specifically like to thank Dr. Boothby for always helping me and guiding me in my college career and beyond.

Finally, tremendous thanks to all of my family and friends for supporting me and always being there for me these last 5 years. I could not have done all of this without you guys. Thank you!

Building Introduction

With the global push towards sustainability, the Ithaca College decided that it was important to show that their college was moving forward with the times, being eco-friendly, and wanting to incorporate their beautiful surroundings into the campus design. This led to a new era of architecture at Ithaca campus.

The Peggy Ryan Williams Center (PRWC) is a key aspect of fulfilling the new architectural objectives of the college because it is seen as a gateway. The occupants of this 58,200 square foot, 74 foot tall building include the college's admissions staff as well as numerous administrative offices. A typical floor plan may be viewed below in Figure 1. The building is also one of the first sights that visitors see upon arriving to the campus. Therefore, Ithaca College saw the building as a way to show perspective students, employees, and visitors that their college was moving forward to be more "green" and incorporate the surrounding nature.

The architecture of the building was also driven by a desire to allow its occupants to not only view the nature around them; but, also, to feel as if they are a part of it. These sensations were achieved by providing large areas of glass and designing a floor plan at angles other than 90 degrees. The irregular angles help to direct the occupants' eyes to the most appealing surroundings, such as the breath-taking view of the nearby Cayuga Lake. The resultant irregular floor plan may be seen on Figure 1 and Figure 2 below.

Another important feature of the PRWC is the pedestrian bridge, which may be viewed in Figure 3 below. The bridge allows its users to go between the PRWC and the adjacent Dillingham Center without going outdoors. A glass façade allows large amounts of light penetration while tying this façade feature to the main building.

LEED Platinum is the prestigious title that the Peggy Ryan Williams Center was awarded by USGBC. However, this achievement required years of planning and sustainability considerations. Most of the architectural appearance of the building was governed by sustainability. Some examples of sustainability include the main roof taking on a slight "V" shape as to help collect rain water, the atrium being designed to assist with natural ventilation, green roofs, geothermal heat wells, solar shading, and many large areas of glass to allow for day lighting.

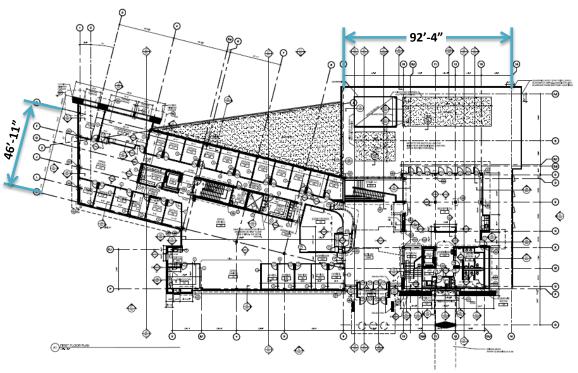


Figure 1: Typical Floor Plan (Level 1) Drawing A101

Figure 2: View from the North Showing Irregular Facade of the PRWC Photo provided courtesy of Holt Architects

Figure 3: View from the Southeast Showing the Pedestrian Bridge Photo provided courtesy of Holt Architects

Structural Overview of the Building

The structural gravity system of the Peggy Ryan Williams Center consists of composite decking supported by wide flange beams, girders, and columns. The foundation consists of reinforced concrete grade beams and piers. The lateral system is comprised of concentrically braced structural steel frames. The following sections will discuss these components in detail, as well as material strengths.

Materials

The structural materials used throughout the PRWC are various strengths of steel and concrete. These material strengths may be viewed below in Table 1 and Table 2.

Steel Shape	Steel Grade			
Rolled Steel W Shapes	ASTM A992 Grade 50			
Rolled Steel C and MC Shapes	ASTM A36			
Rolled Steel Plates, Bars, & Angles	ASTM A36			
Hollow Structural Sections (HSS)	ASTM A500, Grade B or C			
Pipe	ASTM A53, type E or S, Grade B			
*For connections, provide higher grade as required for capacity.				

Table 1: Structural and Miscellaneous Steel Strengths (Drawing S001)

Concrete Component	Concrete Strength
Footings, Foundation Walls, Piers, Miscellaneous	f'c = 4,000 psi
Interior Slabs on Grade or Slabs on Deck	f'c = 3,500 psi
Retaining Walls, Basement Walls, Exterior Slabs, and Grade Beams	f'c = 4,000 psi
*Reinforcing Steel for Concrete -> ASTM A615, Grade 60	

Table 2: Concrete Material Strengths (Drawing S001)

Geotechnical Report and Recommendations

Through their studies, the Geotechnical Engineer (CME Associates, Inc.) made numerous recommendations for the foundation of the Peggy Ryan Williams Center. On the north side, shale bedrock was found 15 feet below grade with unprepared fill on top. The bedrock stratum is underlain by silt. The 2002 Building Code of New York State (BCNYS) does not allow a foundation to bear on unprepared fill. Therefore, all foundations were required to bear on competent shale bedrock. The competent bedrock was presumed to have a soil bearing pressure of 20,000 psf. There is no need to drill into the exposed bedrock on the south side. In order to have competent bearing, CME Associates, Inc. recommends using drilled piers. This conclusion was drawn due to the variable depth to a competent bearing surface and the risks associated with large excavations close to groundwater. CME also recommended that all drilled piers should have a planned bottom elevation not less than 2'-6" below the top of the shale bedrock and a diameter not less than 2'-0". In regards to the drilled piers, the design and construction should follow ACI 336.3R.

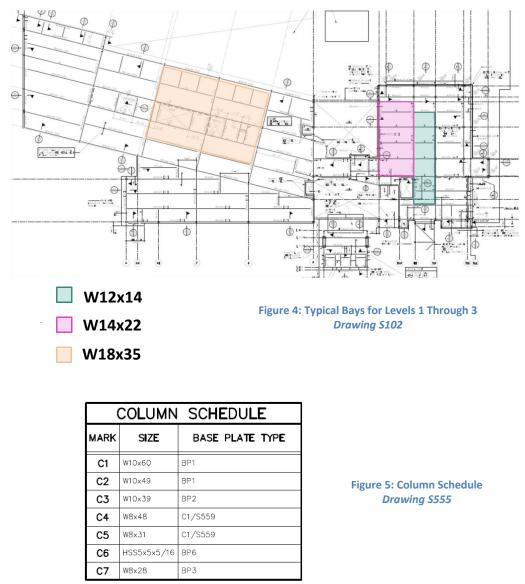
Foundation System

The PRWC foundation includes a wide variety of structural components ranging from grade beams to drilled piers. The foundation walls themselves range from 1'-0" thick with 3'-0" wide footings to 1'-8.5" thick with 6'-0" wide footings. In areas where the footings cannot reach down to competent bedrock, drilled piers are used in combination with piers to reach bedrock. Most areas of the building on the Garden Level are provided with a 5" concrete slab-on-grade. This slab is depressed in areas where special flooring is used. In various portions of the building, grade beams are utilized to transfer the loads of bearing walls from above (stairwell and elevator shaft), braced frames, and to help tie back the column supporting the overhang in the north corner of the building. The grade beam sizes range from 12" wide and 36" deep to 51" wide and 48" deep.

Loads from the grade beams are then transferred to piers and in turn to the drilled piers in order to finally reach competent bedrock. The piers range in size and shape depending on the location. The loads from these piers are then transferred to the drilled piers. All of the drilled piers are 3'-0" in diameter. Pier depths range from simply resting on top of the bedrock to being drilled 4'-0" below the surface of the bedrock.

Gravity System

Floor System


Each level of the PRWC has a 6" concrete slab on a 3"x20 gauge galvanized composite metal deck. However, a few areas have some deviation from this typical floor system. One example of this deviation occurs on the plaza deck and green roof areas. These areas have reinforcement in the deck system to lessen the effects of shrinkage and thermal contraction/expansion. Due to this slab being exposed to the weather, it is prone to the above thermal effects. The corrugations of each of the various types of decking run perpendicular to the wide-flange beams.

(Note: The Garden Level floor system (slab-on-grade) was discussed above in the foundation system section.)

Framing System

The structural framing system of the PRWC is very irregular due to changes in geometry, cantilevers, and locations of increased loads (such as adjacent to elevator shafts and stairwells). Levels 1 through 3 include numerous beam and girder sizes and spans. On those levels there are three different regions which utilize consistent beam shapes and sizes up through the levels. These regions may be viewed in Figure 4 below.

The vast majority of the columns from the foundation (Garden Level) continue up through the building. The columns range from W8x28 to W10x60, while some HSS5x5x5/16 are also present. Column type 2 (W10x49) is the most commonly used size throughout the superstructure of the building. On Level 1, various W10x39 columns were added along the southern perimeter of the building. These columns bear on the load bearing foundation. A few columns are also added to the cantilevered regions in upper levels of the building. These columns are typically W8x48 or W8x31. The column schedule may be viewed in Figure 5 below. These columns have a pinned connection at their base which allows no moment transfer to the pier below.

NOTE:

BASE PLATE TYPES ARE TYPICAL FOR COLUMNS INDICATED IN SCHEDULE UNLESS NOTED OTHERWISE ON PLAN. SEE F1/S555 FOR BASE PLATE DETAILS.

Roof Gravity System

The roof system of the PRWC follows the same basic structural system of the floors below; decking, wide-flange beams, girders, and columns. However, the roof is not supported by a composite deck. Instead, since the roof does not support as large of a load, a much lighter 1.5"x20 gauge galvanized metal roof deck is used. The deck is then supported by wide flange steel beams and girders. A tapered HSS8x6x3/8 sits on top of the wide-flange girders along the perimeter of the building. The HSS is tapered to match the slope of the roof deck which it supports. A roof cantilever (5'-10") is formed from wide-flange beams spaced at 5'-3".

Typical Gravity Loads

The following loads, as seen in Table 3 and Table 4, were based on ASCE7-98 and industry standards.

Location	Typical Dead Load	Typical Live Load
	(psf)	(psf)
Floor	87.5	80
Green Roof	171	100
Roof	43.2	35 (snow)

Table 3: Typical Dead and Live Loads

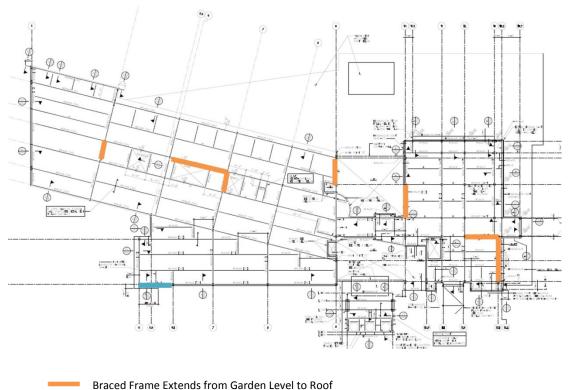

Exterior Wall Type	Typical Dead Load (psf)
Zinc Panel	13.9
Aluminum Storefront	12.0
Composit Aluminum Panel	12.9
Limestone Panel	28.0
Blue Stone Veneer	176.5
Table 4: Exterior Wall L	aads

Table 4: Exterior Wall Loads

Lateral System

In both the North-South and the East-West directions, concentrically braced structural steel frames resist the lateral load. The braced frames are located throughout the building and may be seen on the plan below (Figure 6). Braced frame columns are typically W10s, while HSS6x6x3/8 are commonly used for the diagonal braces. A typical braced frame may be viewed below in Figure 7.

Various braced frames are provided in the north-south direction to resist the lateral loads. However, in the east-west direction, there is a lack of effective braced frames. In order to resist unbalanced loads there should be at least two (staggered) frames in each direction.

Braced Frame Extends from Level 1 to Level 3

Figure 6: Level 2 Braced Frame Layout Drawing S102

Structural

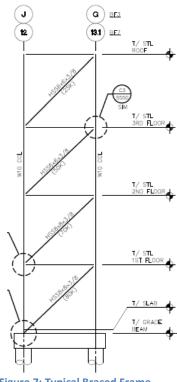


Figure 7: Typical Braced Frame Drawing S550

Lateral Loads Summary

Note: The following lateral loads were calculated based on a simplified version of the PRWC, which only included the east end of the building.

Wind Loads

Wind loading was determined in accordance with ASCE7-98. Table 5 and Table 6 below show a summary of the wind forces in the North-South and the East-West directions. For the analysis, all four wind cases illustrated in ASCE7-98 Figure 6-9 were considered.

Diaphragm	Windward Pressure (psf)	Leeward Pressure (psf)
Level 1	7.73	-7.26
Level 2	9.18	-7.26
Level 3	10.17	-7.26
Roof	14.86	-10.51

Table 5: North-South Direction Wind Loads

Windward Pressure (psf)	Leeward Pressure (psf)
7.72	-4.29
9.31	-4.29
10.39	-4.29
15.05	-7.50
	Pressure (psf) 7.72 9.31 10.39

Table 6: East-West Direction Wind Loads

Seismic Loads

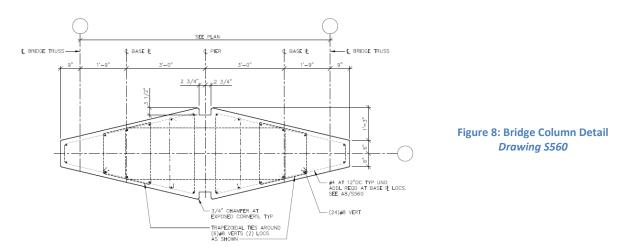
Four seismic load cases were used to calculate the applied seismic forces. Two of these load cases were in the North-South direction, accounting for positive and negative accidental torsion, and two were in the East-West direction, accounting for accidental torsion in that direction. The seismic loads may be seen below in Table 7 and Table 8.

Diaphragm	Story Force (kips)	Adjustment	Adj Story Force (kips)	Story Shear (V _i) (kips)	Bx (ft)	5% Bx (ft)	Ах	Mz (ft-kip)
Level 1	25.77	0.53	13.62	13.62	98.00	4.9	1.0	66.8
Level 2	15.42	0.35	5.45	19.07	88.00	4.4	1.0	24.0
Level 3	18.49	0.41	7.50	26.57	79.50	3.975	1.0	29.9
Roof	8.79	0.40	3.49	30.07	83.50	4.175	1.0	14.6

Table 7: North-South Direction Seismic Loads

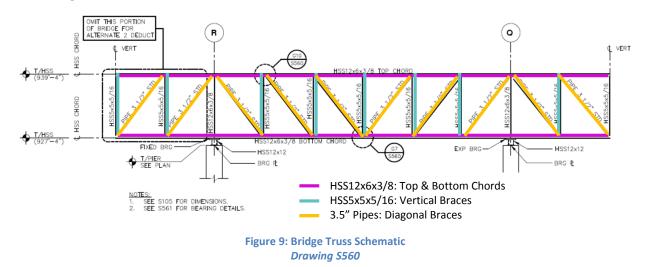
Diaphragm	Story Force (kips)	Adjustment	Adj Story Force (kips)	Story Shear (V _i) (kips)	By (ft)	5% By (ft)	Ах	Mz (ft-kip)
Level 1	25.77	0.53	13.62	13.62	113.00	5.65	1.0	77.0
Level 2	15.42	0.35	5.45	19.07	74.50	3.725	1.0	20.4
Level 3	18.49	0.41	7.50	26.57	75.50	3.775	1.0	28.4
Roof	8.79	0.40	3.49	30.07	80.00	4	1.0	14.0

Table 8: East-West Direction Seismic Loads


Structural Overview of the Pedestrian Bridge

A 100-foot long box truss pedestrian bridge connects the Peggy Ryan Williams Center to the adjacent Dillingham Center.

Foundation and Columns


The pedestrian bridge has a separate foundation system from that of the PRWC, in which its columns rest on a 5'-0''x13'-0''x1'-6'' footing.

The columns take on a hexagonal shape, roughly 11'-0"x3'-6". They are constructed of concrete with #8 vertical reinforcement and various #4 rebar ties. Figure 8 below shows the bridge column detail.

Structural Framing

The pedestrian bridge is a box truss which is constructed using various hollow structural steel shapes and pipes. The top and bottom chords are both framed with HSS12x6x3/8 and the horizontal and diagonal braces are typically HSS4x4x1/4. The two side Pratt trusses have HSS5x5x5/16 vertical members and 3.5" pipe diagonal braces. There is a 2" expansion joint on either end of the bridge. This allows for expansion and contraction of the bridge due to variations in temperature. Figure 9 below shows the bridge truss schematic.

Problem Statement

As previously stated, the steel structure of the Peggy Ryan Williams Center meets strength and serviceability requirements. The steel system was a good solution for dealing with the irregular geometry of the building and its floor openings. However, since a scenario has been created in which the schedule for the project is no longer critical, a reinforced concrete system may also prove to be a good design for the building. The concrete system would prove to be beneficial when it comes to the cantilevers since steel moment connections add significant cost to a project. A post-tensioned concrete slab design was explored in Technical Report 3. The system was found to be beneficial in terms of the floor system depth. However, the region of the building designed using that system had the building's longest spans. Therefore, when it is taken into account that the east end of the building contains much smaller spans, a post-tension slab is not the best solution. Instead, a one way concrete slab system with pan joists and girders will be designed. The pan joist system will better accommodate the varying spans. By changing the structural system to reinforced concrete, the lateral system may act as the lateral system.

The existing structure of the pedestrian bridge is a box truss comprised on Pratt trusses on either side. In order to create a learning opportunity, the bridge structure will be redesigned. As previously discussed, there are two options which will be considered for the bridge redesign. The first option is a reflection of New York's historical covered bridges, in particular that of the Newfield Bridge. The second option for the bridge redesign reflects on the original name of the building, "The Gateway Building" by mimicking the aesthetics of the Golden Gate Bridge.

Proposed Solution

Because the schedule is no longer critical, the structure of the building will be redesigned using reinforced concrete. For reasons previously stated, a one way concrete slab system with pan joists, girders, and columns will be designed. This system appears to be a good choice for the irregular geometry of the building because it lends itself to the varying bay sizes and the cantilevers. The various floor openings would also not cause problems with this system. A thinner slab can be used because it only needs to span the short distance between the pan joists. The pan joists will run in the direction of the existing beams of the structure. In turn, the girders will be located where the existing girders are located. This will minimize the architectural effects within the building due to columns' locations not changing. The floor system will first be designed through the use of computer programs such as spSlab and spBeam. Time permitting, the design will then be checked by hand. Because the building is only four stories, this gravity system may also work as the lateral system for the building. All structural framing members will be designed using ACI318-11.

In order to provide a learning opportunity, two different redesigns of the pedestrian bridge structure will be considered. Early on in the spring semester, sketches will be done to determine which redesign will best fit the existing site and its adjacent buildings. The first option is a reflection of New York's historical covered bridges, in particular that of the Newfield Bridge. For this redesign, the bridge supports will be moved closer to either building creating a longer span to give the illusion of the bridge only being supported by either building. A steel Warren truss will then be designed. The façade of the bridge will lend itself to an architectural breadth in which the façade will reflect on the covered bridge concept while incorporating some of the materials of the façade of the Peggy Ryan Williams Center. The second option for the bridge redesign reflects on the original name of the building, "The Gateway Building." This redesign will reflect upon the Golden Gate Bridge. Two towers (similar to those of the

Golden Gate Bridge) will be designed near the location of the existing two supports. A box truss will then be designed to be suspended from the towers. This option also lends itself to an architectural breadth. Both of these options allow for the consideration of a study of the exterior lighting systems.

Breadth Topics

Architectural Breadth – Bridge Façade Redesign

By changing the structure of the pedestrian bridge, an architectural breadth will need to be performed. If the covered bridge option is chosen, the roof of the bridge will mirror that of a traditional covered bridge. However, various façade materials will be considered which incorporate the materials of the nearby buildings, especially those of the Peggy Ryan Williams Center. The Warren truss will lend itself to large diamond shaped windows on the façade of the bridge. These windows will not only mirror the lattice truss of the Newfield Bridge; but, also, play off of the angles of the roof of the Peggy Ryan Williams Center. If the Golden Gate Bridge option is chosen, the façade of the bridge will most likely remain entirely glass. The appearance, placement, and materials of the towers will need to be taken into consideration. In order to explore these options, hand sketches will be completed. A Revit model of the chosen design will then be created and rendered.

Lighting Breadth - Exterior Lighting of the Bridge

In order to complement the structural redesign of the bridge and the architectural breadth, an exterior lighting breadth will be performed. Use of such techniques as wall washers will be investigated in order to create a modern façade that will complement its surroundings. Luminaires will then be selected. Revit and lighting software will be used to perform a rendering of the new lighting design.

Structural Depth

Gravity System of the Building

Through the use of concrete, numerous columns were able to be removed from the original design. The number of girders was also greatly reduced. The same depth was used throughout $(24-\frac{1}{2}'')$ the floor system for a more economical and constructible design. The original system depth was $30-\frac{1}{8}''$; therefore, the floor system depth was decreased by $6-\frac{5}{8}''$ throughout the building. This allowed for a slightly larger floor-to-ceiling height, thus opening up the interior spaces of the Peggy Ryan Williams Center. Due to time constraints only the level one framing was designed; however, the framing layout was drafted for level 2, level 3, and the roof level. These layouts may be viewed in Appendix A.2: Framing Layouts.

Pan Joist System

Because the pan joist system determined the depth of the floor system used throughout the building, it was designed first. The design was completed though the use of the Concrete Reinforcing Steel Institute Design Handbook 2008 (CRSI). In order to be economical, the same joist size and spacing was used throughout the entire floor system. That allowed for the reuse of formwork. As seen in Table 9 below, two locations were considered in determining the joist size and reinforcement. Those two locations were found to have the worst loading and span conditions. It should be noted that all of the joist load capacities provided in the CRSI table have previously been investigated for deflection. Also, due to the footnote at the bottom of the table, additional deflection calculations did not need to be completed. It was determined to use 30" forms with 6" ribs at 36" on center. The required rib depth was found to be 20" with a 4.5" top slab, thus producing a 24.5" total system depth. The 24.5" depth was then continued throughout the entire floor system of the building. Using concrete with a compressive strength equal to 4000 psi and steel with a yielding strength of 60000 psi, the required top reinforcement was #5 bars at 8" and the required bottom reinforcement was (1) #6 bar and (1) #7 bar per rib. Because the slab only spans the 30" between ribs, only minimum reinforcement was required. Therefore, in the direction perpendicular to the joist span, the slab utilizes #3 bars at 12". The pan joist system design may be viewed in Figure 10 below.

Location	Span (ft)	Live Load (psf)	Dead Load (psf)	Factored Loading (psf)	Top Reinf	Bottom Reinf
D3-D4	35	100	21	185.2	#5 @ 9"	#6 & #7 per rib
D4-D5	31.5	100	99	278.8	#5 @ 8"	#6 & #6 per rib

Table 9: Locations Considered for Pan Joist Design

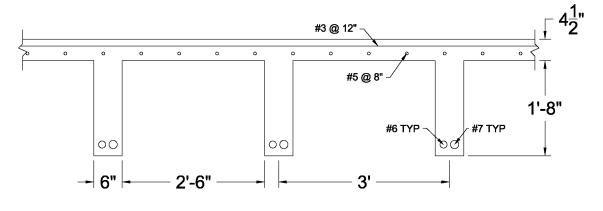
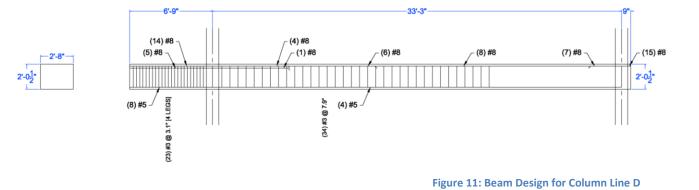


Figure 10: Pan Joist System Design


Girder Design

Three frames were chosen to be designed from the level one framing. Those frames were considered to be the most critical cases due to their long spans, large tributary widths, and high loadings. The girders were designed using spBeam. The predetermined dead and live loads were applied. An area load was also applied to account for the weight of the pan joists. Once the girders were designed for strength requirements, deflections were checked per ACI 318-11 Table 9.5b. The girder along column line 13 failed in deflection. In order to account for this, the width of the girder was increased slightly. The detailed designs for the girders along column lines 2, 8, and 13 may be viewed in Appendix A.3: Girder Designs. All of the stirrups are composed of two legs of their respective sizes, unless otherwise noted. The spBeam output is available in Appendix A.4: spBeam Output for Girders.

Beam Design

Beams were laid out along column lines D, F, and L in order to transfer the column loads from above back away from the cantilever and into the main structure of the building. The beam along column line D was designed due its large span. To be conservative in the design and not count on the dead load of the floor system to resist the uplift from the cantilever, the beam was designed with only considering the point load on the end of the cantilever and the member's own self weight. The assumed column loads from above first had to be carried down through the building and to the first level. This calculation was done using an excel sheet and may be viewed in Appendix A.5: Assumed Column Loads From Above. Once the beam was designed for strength requirements using spBeam, deflections were checked per ACI318-11 Table 9.5b. The cantilever failed in deflection. To provide better serviceability, compression reinforcement was added. Without the compression reinforcement, the beam would have needed to be over seven feet wide. The beam design may be viewed in Figure 11 below. Top reinforcement and stirrups were used in order to support the loaded cantilever. All of the stirrups are composed of two legs of their respective sizes. The spBeam output is available in Appendix A.6: spBeam Output.

Column Design

The columns on column lines 2, 8, and 13 were designed using spColumn. The assumed loadings from above, as well as the loads from the floor system of level one, were applied to the level one columns. A Microsoft Excel sheet was utilized to determine the loads applied to each column, including both axial loads and moments. The Excel sheet may be viewed in Appendix A.7: Load to Apply to Level 1 Columns. A square section was chosen for the columns for ease of construction and to aid with the future lateral system design. Constructability was considered when designing the columns. The reinforcement was kept as #6, #8, and #10 bars. Equal spacing was also kept between bars. The column designs for frame 2 may be viewed below in Figure 12, while the remaining designed columns may be seen in Appendix A.8: Column Designs. The spColumn output is available in Appendix A.9: spColumn Output. For constructability, all column sizes were increased to be an 18" x 18" section. This increase in size is shown in the lateral system of the building.

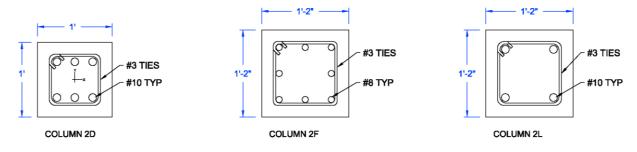


Figure 12: Column Designs for Column Line 2

Final Gravity Framing

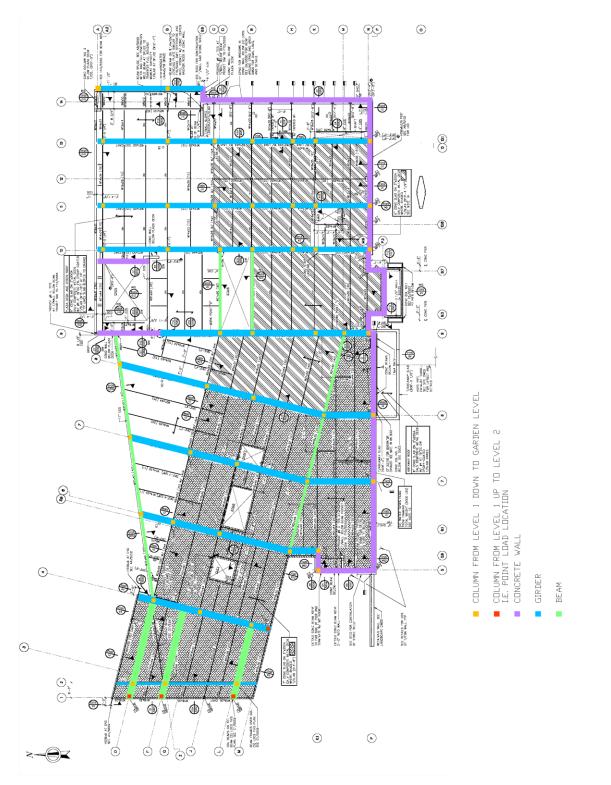


Figure 13: Gravity Framing for Level 1

Lateral System of the Building

The existing lateral system of the building consists of concentrically braced structural steel frames in both the North-South and East-West directions. By changing the building material to concrete, the braced steel frames were no longer the best option for the lateral system. As previously mentioned, since the building is only four stories, the gravity system had the potential to also perform as the lateral system for the building. The columns and girders would act as frames in the North-South direction and the columns and joists would act in the East-West direction. Therefore, every column line would essentially act as a lateral resisting frame. Once the gravity system for level one was designed, the system was then checked at level one for adequacy in resisting the lateral forces on the building. To allow for ease of analysis, only four concrete moment frames were considered in each the North-South and the East-West direction. It was determined that if these frames were found to be adequate to resist the lateral loads, then by allowing all of the frames of the building to help resist the load, the system would surely be adequate. The concrete moment frames considered are shown in red in Figure 14.

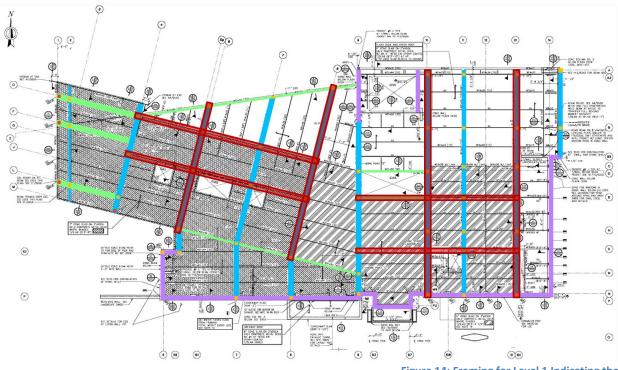


Figure 14: Framing for Level 1 Indicating the Frames Considered in Lateral Analysis

Lateral Load Determination

The existing lateral system of the building was governed by wind. However, since the building material was changed to concrete, both seismic and wind calculations needed to be completed to ensure that wind loads still controlled the design. ASCE7-10 was used to calculate the lateral loads. Because the building is Seismic Design Category A, the simplified procedure was able to be used, in which Fx = 0.01Wx. The wind loads were calculated using the Main Wind Force Resisting System (MWFRS) procedure. Through various hand calculations, which may be seen in Appendix B.1: Lateral Load Calculations, it was determined that wind loads still controlled the building's lateral system design. A summary of the seismic and wind loads may be seen below in Table 10, Table 11, and Table 12.

Seismic Load B	ase Shear		
	Force (k)	Story Shear (k)	Overturning Moment (ft-k)
Level 1	45.0	132.0	599.9
Level 2	29.0	87.0	773.5
Level 3	31.0	58.0	1240
Roof	27.0	27.0	1869.8
Total	132.0		4483.2

Table 10: Summary of Seismic Loads

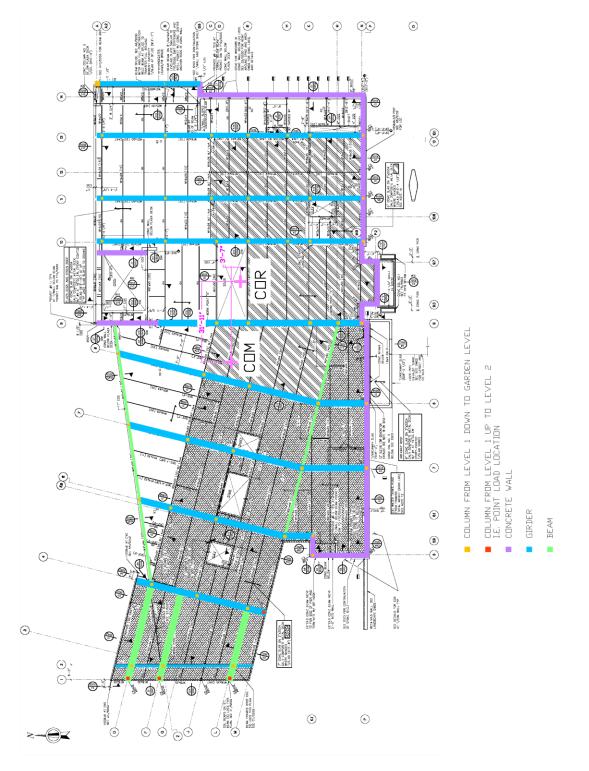

Wind Load Base Shear & Overturning Moment								
	Force (k)	Story Shear (k)	Overturning Moment (ft-k)					
Garden Level	36.6	463.7	0.0					
Level 1	73.2	427.0	976.4					
Level 2	80.2	353.8	2139.8					
Level 3	136.8	273.6	5471.3					
Roof	136.8	136.8	9472.8					
Total	463.7		18060.3					

Table 11: Summary of Wind Loads in the North-South Direction

Wind Load Base Shear & Overturning Moment								
	Force (k)	Story Shear (k)	Overturning Moment (ft-k)					
Garden Level	14.1	185.9	0.0					
Level 1	28.1	171.9	374.5					
Level 2	31.5	143.8	838.8					
Level 3	54.4	112.3	2175.3					
Roof	57.9	57.9	4011.7					
Total	185.9		7400.3					

Table 12: Summary of Wind Loads in the East-West Direction

Each of the frames being considered in the design were then modeled in RISA-2D. Through the use of member properties and by applying a 10 kip "dummy load" the stiffness of each frame was determined. Appendix B.2: Determination of Frame Stiffness's may be referenced for the stiffness calculations. Those stiffness's could then be used to calculate the center of rigidity of level one. Figure 15 below shows where the center of mass and center of rigidity are located on level 1. Detailed calculations of these centers may be seen in Appendix B.3: Center of Mass and Center of Rigidity.

Center of Rigidity					
Xr = 158.59 ft					
Yr =	51.07	ft			

Center of N	lass
X - Direction	126.7
Y - Direction	54.7

Figure 15: Center of Mass and Center of Rigidity of Level 1

Through the use of stiffnesses, the level one story shear was then distributed to each of the frames for all six wind load cases, including both positive and negative moments. Both direct shear and torsional shear were considered. Excel sheets containing these calculations are available in Appendix B.4: Wind Load Cases. Based on the total shear force, a worst load case was found for each frame. A summary of these results may be viewed in Table 13 below.

	Deflection Under Worst Case (in)	0.58900	0.37400	0.23900	0.22300	0.23900	0.21600	0.23700	0.22800		
	Worst Case	WC 2: N-S + 0.15 By	WC 1: N-S	WC 1: N-S	WC 2: N-S - 0.15 By	WC 1: E-W	WC 1: E-W	WC 1: E-W	WC 1: E-W		
	Worst Case Shear (kips)	185.5	112.7	125.1	116.6	46.0	48.7	45.5	45.7		
	(EM - 0.15Bx) MC 4: (NS - 0.15B⁄) +	36.9	41.8	87.0	95.3	23.5	27.8	25.0	28.4		
ame	(EM + 0'I2B×) MC tl: (N2 - 0'I2B ^A) +	55.3	49.0	81.5	75.3	27.0	27.3	25.9	24.5		
Determination of Worse Case on Each Frame	(EM - 0.15B×) MC 4: (NS + 0.15BÅ) +	132.1	79.4	58.2	-8.6	41.5	25.3	29.9	7.9		
Case on	(EM + 0'J2B×) MC t: (N2 + 0'J2BÅ) +		86.7	52.6	-28.6	45.0	24.8	30.9	4.0		
of Worse	MC 3: N2 + EM	124.8	85.6	93.0	44.4	45.6	35.0	37.2	21.6		
ination c	MC 5: E-M - 0.15 BX	-9.5	-3.8	2.9	10.4	32.2	36.9	33.5	36.9		
Determ	MC 5: E-M + 0.12 B×	14.9	5.9	-4.5	-16.3	36.8	36.2	34.8	31.6	_	
	MC 5: N-2 - 0.15 BY	58.7	59.4	113.0	116.6	-0.9	0.1	-0.2	1.0	inchoc	Inches
	MC Σ: N-2 + 0.15 Βγ	185.5	109.6	74.6	-21.9	23.1	-3.2	6.4	-26.3	O FOODO inchoc	00690.0
-	MC T: E-M	3.6	1.4	-1.1	-3.9	46.0	48.7	45.5	45.7	(d+h)	outub
	MC I∶N-S	162.8	112.7	125.1	63.1	14.9	-2.0	4.1	-16.9	Most Dofferies (Neth Couth)	
	Frame	9	∞	10	13	۵	ш	U	¥		יו הפוובננומ
			կքո -կք			ţs	эW	-156	23	1410.00	NUUIS

Table 13: Determination of Worst Case Wind on Each Frame

inches

Worst Deflection (East-West)

Moment Frame Design

Using RISA, the worst case wind load for each frame was applied to their respective frames and their deflections were measured. The deflections may be seen in Table 13 above. Per ACI318-11, various columns were checked to see if they were sway or nonsway. In order to be conservative, when determining if the columns were sway, the worst case deflection was used for the story deflection. As seen in Table 14 below, all of the columns that were checked were found to be nonsway.

	Sway vs. Nonsway								
Frame	Column	∑Pu (kip)	∆ (in)	V _{us} (kip)	L _c (in)	Q	Sway/ Nonsway		
8	Z	168	0.589	463.7	160.0	0.0013	Nonsway		
8	D	545	0.589	463.7	160.0	0.0043	Nonsway		
8	G	580	0.589	463.7	160.0	0.0046	Nonsway		
8	Μ	681	0.589	463.7	160.0	0.0054	Nonsway		
8	Р	247	0.589	463.7	160.0	0.0020	Nonsway		
13	A.2	143	0.589	463.7	160.0	0.0011	Nonsway		
13	В	250	0.589	463.7	160.0	0.0020	Nonsway		
13	С	296	0.589	463.7	160.0	0.0023	Nonsway		
13	Е	256	0.589	463.7	160.0	0.0020	Nonsway		
13	н	207	0.589	463.7	160.0	0.0016	Nonsway		
13	К	290	0.589	463.7	160.0	0.0023	Nonsway		
13	Ν	226	0.589	463.7	160.0	0.0018	Nonsway		
D	8	545	0.239	185.9	160.0	0.0044	Nonsway		
E	13	256	0.239	185.9	160.0	0.0021	Nonsway		
G	8	580	0.239	185.9	160.0	0.0047	Nonsway		
К	13	290	0.239	185.9	160.0	0.0023	Nonsway		

NOTE: The deflections given above are based on the worst case deflection due to wind in the direction in which the frame acts.

Equation Used: $Q = \begin{array}{c} \sum Pu * \Delta \\ V_{us} * L_c \end{array} \leq 0.05 \rightarrow Nonsway$

Table 14: Determinatio	n of Sway vs. Nonsway
-------------------------------	-----------------------

The moments and axial forces on the columns, as a result of the worst case wind load being applied to their respective frames, were then taken into spColumn to complete the column designs. These reactions may be seen in Appendix B.5: Column Lateral Loadings to be Used in spColumn Analysis. Because RISA and spColumn do not use the same sign convention, the member forces provided by RISA were changed to match the sign convention used by spColumn. Because some of the axial forces in the columns were tension forces, which would counteract the gravity compressive forces, those tension forces were excluded from the spColumn analysis.

As previously mentioned, the gravity column sizes were all increased to 18" x 18" for constructability. This new size was used in the lateral system analysis. Because the columns were nonsway, slenderness did not need to be considered. The concrete was also cracked for the analysis. Each of the designed columns were checked for biaxial bending. This was particularly important since several of the designed

columns participated in both a North-South frame and an East-West frame. However, the two reactions were not added. Since only one wind load case would occur at a time, the load cases were investigated separately. The final column designs may be seen in Figure 16 below. spColumn output is available in Appendix B.6: spColumn Output for Final Column Designs.

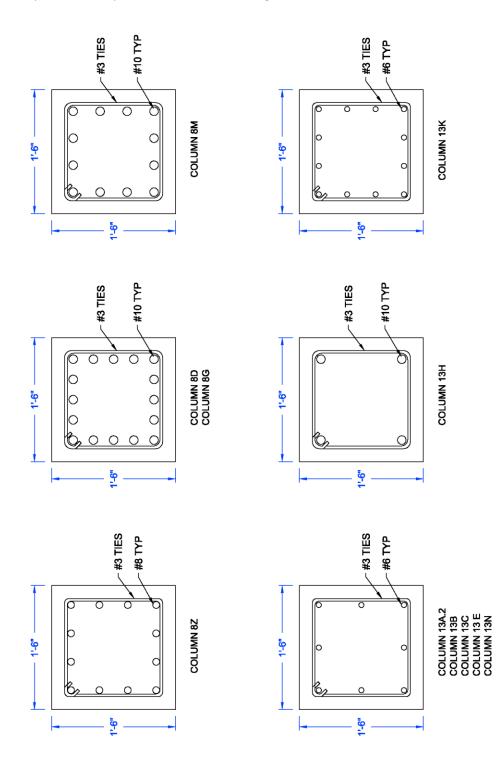


Figure 16: Final Column Designs

To ensure that the frames were adequate at resisting the lateral forces, a worst case girder and joist were checked for beam-column interaction. Through hand calculations, it was determined that both the joist and the girder were adequate. The interaction calculations may be viewed in Appendix B.7: Beam-Column Interaction Calculation.

In conclusion, the gravity system of the Peggy Ryan William Center also acts as the building's lateral system. The final gravity column size of 18" x 18" was used. The previously designed girders and joists were also found to be adequate in acting as the lateral system.

Gravity System of the Pedestrian Bridge

Early on in the semester, sketches were produced to determine if the bridge should play off of a historic covered bridge or the Golden Gate Bridge. Through reasoning that may be viewed in the Architectural Breadth, the covered bridge option was chosen. Therefore, the redesign consisted of a box truss similar to the existing configuration. However, the two bridge supports were moved out to open up the space and more closely mimic a covered bridge. A Warren truss was used in the design. This particular truss was chosen for architectural reasons. Because the gravity loads dictate the two side trusses, those two trusses were designed first.

Gravity Loads

Gravity Loads were first calculated which included dead loads, live loads, snow loads, and snow drift loads. These load calculations are available in Appendix C.1: Gravity Loads on the Bridge. A layout then had to be chosen for the truss before panel point loads could be determined. The chosen layout may be viewed below in Figure 17 below. Layouts were also developed for the top and bottom trusses. Their layouts were based on the side Warren Truss design. Extra members were also added in order to ensure that the panel point loads were transferring into the proper locations. These layouts may be viewed in Appendix D.1: Bridge Trusses.

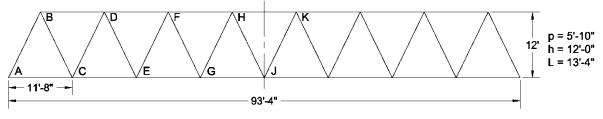


Figure 17: Truss Layout

Once the above layout was chosen, the panel point loads were calculated. The panel point load calculations may be viewed in Appendix C.2: Determination of Panel Point Loads and the final loads may be viewed in Appendix C.3: Panel Point Loads. Because the bridge must meet the requirements of ASCE7-10, the dead, live, and snow loads were kept separate so that load combinations could be considered. In the design of the two side trusses, only the gravity loads needed to be considered. The lateral loads would be taken by the top and bottom trusses, which will be designed time permitting. In considering gravity loads, only three different load combinations required consideration: 1.4 D; 1.2 D + 1.6 L + 0.5 S; and 1.2 D + 1.6 S + L. It was decided to factor the loads and then apply them to the truss. The loading conditions for these three load combinations are available in Appendix C.4: Panel Point Load Combinations. By factoring the loads first, it was determined that 1.4 D did not control the design.

Member Forces

Using the Indexing Method, the index for each member was then determined. The indices for the two different load combinations may be viewed in Appendix C.5: Member Indices. The indices, which are the vertical forces in the members, were then converted into axial forces through the use of geometry. The conversion may be seen in Appendix C.6: Conversion of Indices to Member Forces. The resultant forces may be viewed below in Figure 19 and Figure 20. A color coding key is available for reference in Figure 18 below.

Figure 18: Color Coding Key

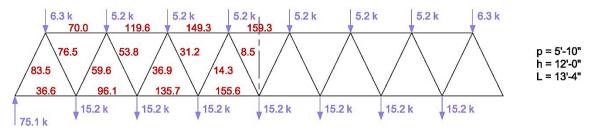


Figure 19: Member Forces for 1.2 D + 1.6 L + 0.5 S

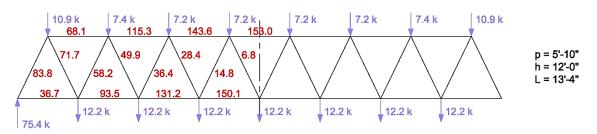
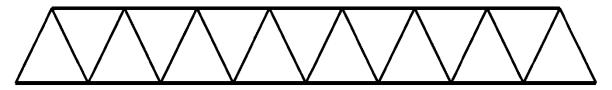


Figure 20: Member Forces for 1.2 D + 1.6 S + L


The member forces were then verified using the Method of Joints; those calculations may be viewed in Appendix C.7: Method of Joints. As seen below in Table 15, it was found that the Indexing Method is an accurate method of analysis.

Verify Forces for: 1.2 D + 1.6 L + 0.5 S							
Member	Indexing Method (k)		Variation (k)				
AB	83.5	83.5	0.0				
AC	36.5	36.6	-0.1				
BC	76.5	76.5	0.0				
BD	69.9	70.0	-0.1				
CD	59.6	59.6	0.0				
CE	96.0	96.1	-0.1				
DE	53.8	53.8	0.0				
DF	119.5	119.6	-0.1				
EF	36.9	36.9	0.0				
EG	135.6	135.7	-0.1				
FG	31.1	31.2	-0.1				
FH	149.2	149.3	-0.1				
GH	14.2	14.3	-0.1				
GJ	155.4	155.6	-0.2				
HJ	8.4	8.5	-0.1				
НК	159.1	159.3	-0.2				

Table 15: Comparison Between the Indexing Method and the Method of Joints

Member Design

By loading all of the panel points (producing a uniform load), the worst case force in both the top and bottom chord was determined. Because the far left diagonal is a compression member, loading all of the panel points, also determined the worst case force in the diagonals. Since the top chord is a compression member, Table 4-4 of the Steel Manual was used to determine the size of the member. An HSS7x7x¼ was chosen for the top chord based on the worst axial force in the chord. For aesthetic purposes, the same size HSS was desired for the bottom chord. Using Table 5-5 of the Steel Manual, which is for the design of tension members, it was found that an HSS7x7x³/₁₆ meets the strength requirements for the design of the worst case axial force in the chord. However, for constructability, an HSS7x7x¼ was chosen for the bottom chord. For the diagonals, it was desired to have an HSS size that was approximately half the size of the top and bottom chord. This would allow for a nice aesthetic of the truss. Therefore, using Table 4-4 of the Steel Manual, an HSS4x4x½ was chosen for the diagonals based on the worst case force in the far left diagonal. The design summary may be viewed in Appendix C.8: Member Design. The final truss design may be viewed in Figure 21 below.

Top Chord: HSS7x7x $\frac{1}{4}$ Bottom Chord: HSS7x7x $\frac{1}{4}$ Diagonals: HSS4x4x $\frac{1}{2}$

Figure 21: Final Design of the Side Trusses

Architectural Breadth - Bridge Façade Redesign

Initial Sketches

In the beginning of the semester, sketches were done to determine which redesign concept would be chosen. The first sketch was the covered bridge option. This option was inspired by New York's historical covered bridges, in particular that of the Newfield Bridge. The Newfield Bridge was built using a lattice truss. That truss type created an interesting diamond pattern on the interior, which may be

seen in Figure 22 below. It was desired to mimic this diamond pattern in the bridge redesign. Therefore, if this redesign would be chosen, a truss type would be selected that allows for the incorporation of the diamond pattern. The covered bridge redesign would also consist of moving the supports closer to either adjacent building, thus creating a longer span to give the illusion of the bridge only being supported by either building. A gable roof would also be considered if this redesign option was chosen. The facade would incorporate some of the materials of the façade of the Peggy Ryan Williams Center. The first sketch of the covered bridge redesign concept may be seen in Figure 23 below.

Figure 22: The Newfield Bridge | Photo taken 07-31-13

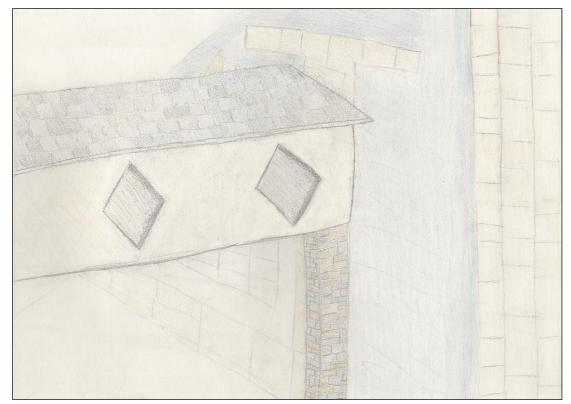


Figure 23: Covered Bridge Redesign Concept

The second redesign option reflected on the original name of the building, "The Gateway Building." Therefore, this redesign would reflect upon the Golden Gate Bridge. The redesigned box truss would be very similar to the original design, including a glass façade. However, instead of having the two original pier supports, the bridge would instead be suspended from two towers (similar to those of the Golden Gate Bridge). The towers would likely be located where the current supports reside. The size of the towers would need careful consideration so that they allow the bridge to stand out, yet not overpower the Peggy Ryan Williams Center. The second sketch, of the Golden Gate Bridge redesign concept, may be seen in Figure 24 below.

Figure 24: Golden Gate Bridge Redesign Concept

In comparing these two sketches, both redesigns would provide a good learning opportunity of bridge design while carefully considering the bridge's impact on its surroundings. While the Golden Gate Bridge option would be very interesting and provide a learning opportunity of suspension bridges, its box truss would not change much, if at all, from the original design. That option may also not appear in harmony with the existing adjacent buildings, due to the two large towers. The covered bridge option would allow for a complete redesign of the box truss and more options for the façade of the bridge. Careful consideration would need to be taken to ensure that this bridge does not look out-of-place next to the existing buildings. Through completing the two sketches it became evident that the covered bridge option was desired. This option would provide a wide range of opportunities for the bridge redesign. Upon choosing the covered bridge option, a third sketch was done. That sketch shows a more complete view of the bridge and the adjacent buildings. With the use of careful material consideration, it was determined that this redesign would tie in nicely with the Peggy Ryan Williams Center. The third sketch may be viewed below in Figure 25.

Figure 25: Covered Bridge Option - Redesign Concept Chosen

Truss Design

As previously stated, in choosing the covered bridge redesign option, a truss would be selected that would achieve a diamond pattern. Originally, a Double Intersection Warren Truss was chosen for the redesign. The diamond pattern of that truss would mimic that of the lattice truss of the Newfield Bridge. However, it was decided that a Warren Truss would be used in the redesign. The Warren Truss would be more economical since the truss would require fewer steel members. In order to preserve the concept of mimicking the Newfield Bridge, an applique would be applied to the façade of the bridge that suggests that a Double Intersection Warren Truss is within. The diamond design applique would not only mimic the Newfield Bridge; but also, the diamond pattern ties into the irregular roof angles of the bridge would be a large window. The trusses were created using Autodesk Revit 2014. The complete box truss may be viewed below in Figure 26. The individual side, top, and bottom trusses may be viewed in Appendix D.1: Bridge Trusses.



Figure 26: Bridge Box Truss

Gable Roof

Initially, the gable roof was chosen to more closely mimic a covered bridge. However, in order to attempt to not take the covered bridge idea too literal, other roof options were considered. A shed roof was taken into consideration. But, this option was eliminated due to both sides of the bridge being readily exposed to the public. Therefore, neither side would allow the shed roof design. A flat roof design was also considered. The downside of the flat roof design was that it appeared to be too similar to the original design. Also, the bridge did not give off the same vibe as it did with the gable roof. As a result, it was decided to use a gable roof for the bridge redesign.

Façade Diamond Design

The main façade of the redesigned bridge consists of a diamond pattern. This façade feature was inspired by the Yotel Building which is located in New York City. The façade of that building features various polygonal shapes which reflect the light and cast shadows when they are washed with light. Figure 27 below shows the Yotel Building's façade.

Figure 27: Yotel Building Façade | Photo Courtesy of ebayink

This type of façade was inspired by the decision to also complete a Lighting Breadth of the bridge. Various patterns and shapes were explored for the façade design. In the end, a diamond and half diamond pattern was chosen. This pattern would tie into the truss design and play off of the numerous irregular angles of the Peggy Ryan Williams Center. In order to avoid the façade becoming too busy, only alternating rows of diamonds have the half diamond extrusion. This pattern, like that of the Yotel Building, will allow light to be reflected and interesting shadows to be created when the façade is washed with light. An up-close render of the diamond pattern façade may be seen below in Figure 28.

Figure 28: Diamond Facade Pattern

Materials Chosen

Aluminum | Diamond Patterned Façade

- The aluminum ties in with the aluminum panels on the Peggy Ryan Williams Center
- Green tint was chosen to take the LEED status literally and to connect the bridge to the lush green landscape surrounding it.

Limestone | Lattice Applique

- The limestone lattice mimics the limestone panels on the PRWC.
- Limestone allows for a clear distinction of the lattice design.

Bluestone | Façade of the Supports

- Bluestone was used on the perimeter of the lower level of the PRWC. Therefore, by using it at the bottom of the bridge, it continues the pattern started by the building.
- Bluestone also helps the bridge supports to look like they are a part of the adjacent building and not simply there for the bridge.

Slate | Roof

- The slate again ties back to the bluestone used on both the building and the bridge.
- ✤ The slate also matches the overall color scheme and feel of the bridge's exterior.

Façade Comparison

The redesigned bridge was created using Autodesk Revit 2014. In the following four figures, the differences between the existing bridge façade and the redesigned bridge façade may be seen.

Figure 29: Existing Bridge Façade | Front View

Figure 30: Redesigned Bridge Façade | Front View

Figure 31: Existing Bridge Facade | Prospective View

Figure 32: Redesigned Bridge Facade | Prospective View

Architectural Breadth Conclusion

The architectural redesign of the bridge produced a design which is very different from the original design and commands attention, yet it is still in harmony with its surroundings. Through the redesign, a new truss type was used; the façade was designed for both architectural features and lighting features, and materials were selected to reflect upon the Peggy Ryan Williams Center. The bridge successfully mimics the Newfield Bridge, with its Warren Trusses and diamond design applique on the façade, without taking the covered bridge inspiration too literally.

Lighting Breadth - Exterior Lighting of the Bridge

As mentioned in the Architectural Breadth section, the façade of the bridge was inspired by the Yotel Building in New York City. In order to accomplish a similar lighting affect, the lighting fixture ColorGraze Powercore 30x60, manufactured by Philips Color Kinetics, was selected for the exterior lighting of the bridge. This luminaire was chosen for its high performance; including its linear form which enables the grazing of the façade and its superior ability at highlighting the texture of facades. Another reason for the selection of this luminaire was for its outdoor weather rating. The 30x60 was chosen because it allows for a more uniform effect. This product has been used in various successful façade projects such as the John E Jaqua Academic Center for Student Athletes at the University of Oregon. This luminaire has well defined color changing ability as well. When paired with an adequate control system, such as Philips LED Lighting Systems Controllers, the façade can be lit under colored light. This can become a pleasant visual element to the new bridge. In the following figures, the various lighting effects may be viewed. Figure 33 shows the original white LED. Figure 34 shows the façade grazed with green LED light, which further accents the green façade material of the bridge. Figure 35 illustrates a blue LED light graze, which is one of Ithaca College's school colors. The specification sheet for the luminaire is available in Appendix E.1: Luminaire Specification Sheet.

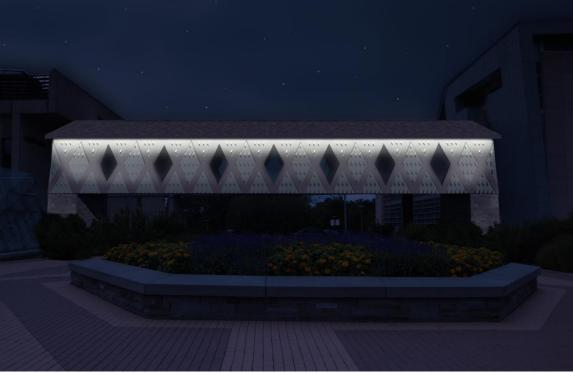


Figure 33: Exterior Lighting of the Bridge with Original White LED Light

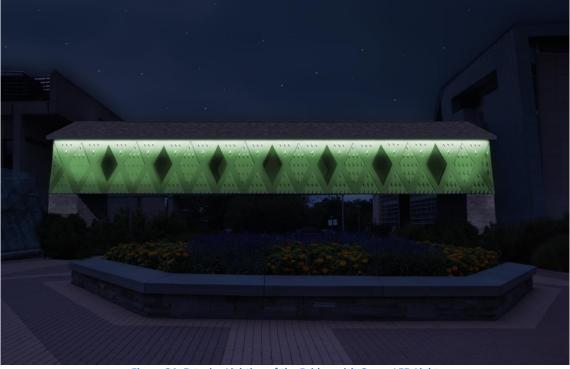


Figure 34: Exterior Lighting of the Bridge with Green LED Light



Figure 35: Exterior Lighting of the Bridge with Blue LED Light

Conclusion

This report provided an overview of both the analysis and the redesign of the Peggy Ryan Williams Center. The existing gravity and lateral system of the building were analyzed during the fall semester. Both of the systems were found to be adequate. A scenario was then created in which the schedule was no longer critical, thus allowing concrete to be explored as the building material. Through further investigation, it was determined to redesign the gravity system of the building to be a one way concrete slab system with pan joists, girder, and columns. The pan joists were designed using the CRSI Manual. After a joist system was selected, the same system depth (24- $\frac{1}{2}$ ") was used throughout the building. The beams and girders were then designed using spBeam. Finally, the loads were carried down through the building and the columns were designed using spColumn. Through the use of this system, the floor system depth was decreased by $6-\frac{5}{8}$ ". This allowed for a larger floor to ceiling height, thus opening up the interior spaces. A few girders and columns were able to be removed from the existing framing of the building. Therefore, pending the owner's preference, a more open floor plan may be utilized.

The next section of the report focused on determining if the new gravity system would be adequate to act as both the building's gravity system and its lateral system. Seismic and wind loads were calculated per ASCE7-10, and RISA was used in order to determine the stiffness of the concrete frames. Once the forces were distributed accordingly, spColumn was used to design/analyze the columns. In the end, it was determined that the building's gravity system was adequate to act as the building's lateral system as well.

The pedestrian bridge was the focus of the remaining portion of the report. Two inspirational concepts were considered for the redesign, a reflection on the building's original name, "The Gateway Building," and a reflection of New York's historical covered bridges. It was decided to redesign the bridge using the covered bridge inspiration. Next, a Warren Truss was designed for the side truss of the redesigned bridge. The bridge was designed through the use of the historical Indexing Method and the Steel Manual. This structural redesign opened the door for both an architectural breadth of the bridge façade and a lighting breadth of the exterior of the bridge.

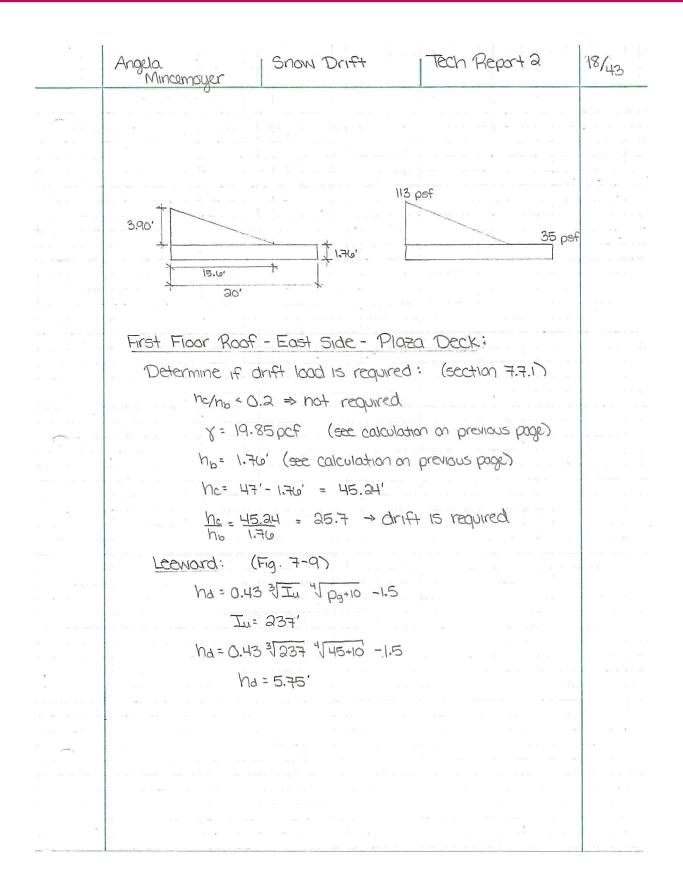
A detailed Autodesk Revit model served as the main feature of the architectural breadth. The Revit model shows the careful consideration that was taken into both the design and the materials chosen for the bridge façade. The bridge was then rendered to allow a nice comparison to be seen between the existing bridge and the redesigned bridge. While both designs allow the bridge to be cohesive with its surroundings, the redesign allows the pedestrian bridge to stand out more from its surroundings. In order to complement the structural redesign of the bridge and the architectural breadth, an exterior lighting breadth was performed. The inspiration for the façade of the bridge and in turn the lighting of it was the Yotel Building in New York City. A luminaire from Philips Color Kinetics was selected in order to achieve a similar lighting affect. The report showcases various lighting effects which are possible with the high performance luminaire.

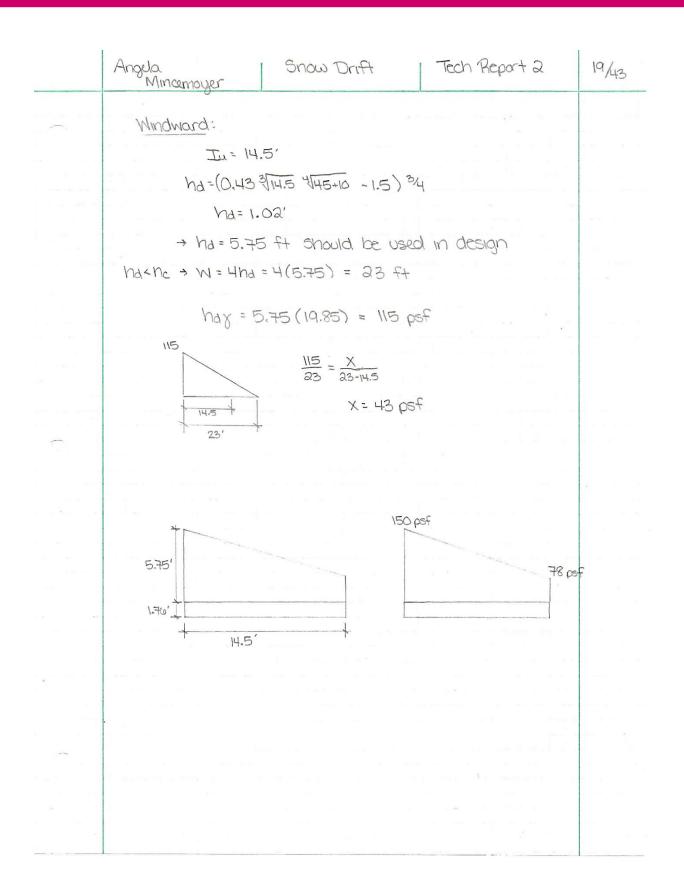
The structural depth of the bridge, architectural breadth, and lighting breadth all provided a great learning experience and a peak into the design process that goes into creating large scale bridges.

References

- American Association of State Highway and Transportation Officials. (2009). *LRFD Guide Specifications* for the Design of Pedestrian Bridges.
- American Concrete Institute, ACI-318. (2011). *Building Code Requirements for Structural Concrete and Commentary*. Farmington Hills, MI.
- American Institute of Steel Construction. (Fourteenth ed.). *Steel Construction Manual*. American Institute of Steel Construction.
- American Society of Civil Engineering. (2010). ASCE-7 10, Minimum Design Loads for Buillings and Other Structures. Reston, VA.
- Concrete Reinforcing Steel Institute. (2008). *Concrete Reinforcing Steel Institute Design Handbook (CRSI)*. Schaumburg, IL: Concrete Reinforcing Steel Institute.
- ebayink. (n.d.). *Photo*. Retrieved March 18, 2014, from flickr:

http://www.flickr.com/photos/ebayink/6790544246/sizes/o/

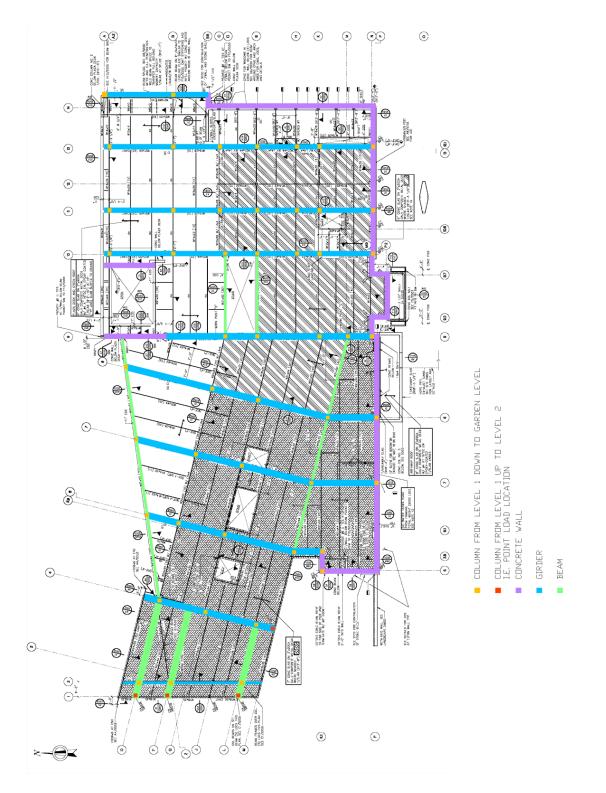

International Code Council. (2009). International Building Code. International Code Council.


Appendix A.1: Snow Drift

	Angela Snow Drift Tech Report 2 Mincemayer	17/43
	First Floor Roof - North Side - Green Roof & Plaza Deck	
	Determine if drift load is required: (section 7.7.1)	
	$hc/h_b < 0.a \Rightarrow not required$	
	$\chi = 0.13 p_{g} + 14 < 30 pcf$ = 0.13 (45) + 14 = 19.85 pcf < 30/	
	$h_{b} = \frac{\rho_{f}}{\chi} = \frac{35}{19.85} \rightarrow h_{b} = 1.76'$	
	$h_{c} = 45' - 1.76' = 43.24'$	
	$\frac{h_c}{h_b} = \frac{43.24}{1.76} = 24.6 \rightarrow drift is required$	
	Leeward: (Fig. 7-9)	
	ha= 0.43 3 Iu 4/Pa+10 - 1.5	
	$T_{4} = 0.33 + 124 + 193 + 10 + 1.3$	
	= 0.43 3 98 445+10 - 1.5	
	hd = 3.90 ft	
	Windward: (Fig. 7-9)	
	$I_{u} = 20$ ft	
	hd=(0.43 3/20 1/45+10 - 1.5) 3/4	
	ha = 1.20 ft	
·*	\rightarrow ha = 3.90 ft should be used in design	-
	$h_{d} < h_{c} \Rightarrow W = 4h_{d} = 4(3.90) = 15.6 ft$	· · · ·
	hdy = 3.90'(19.85) = 78 psf	
		-

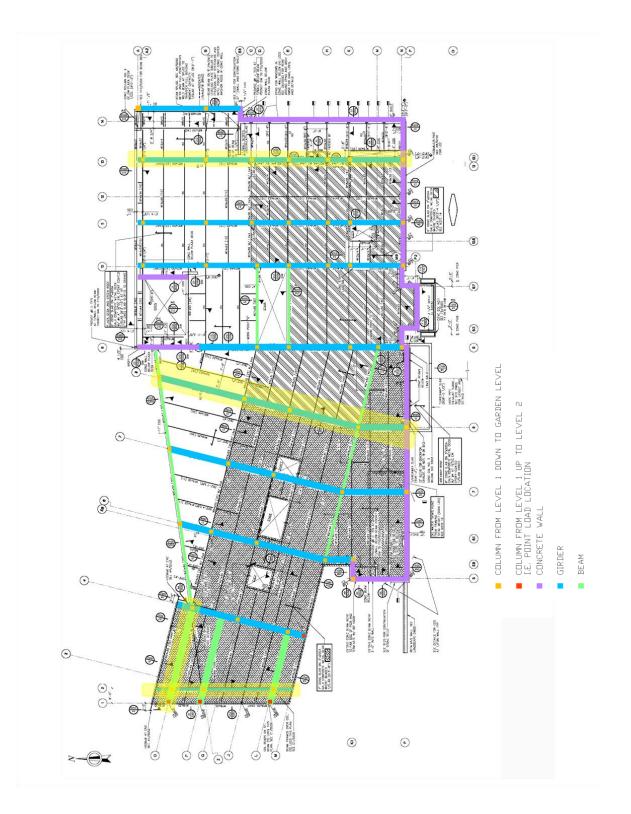
Angela Mincemoyer

Final Report

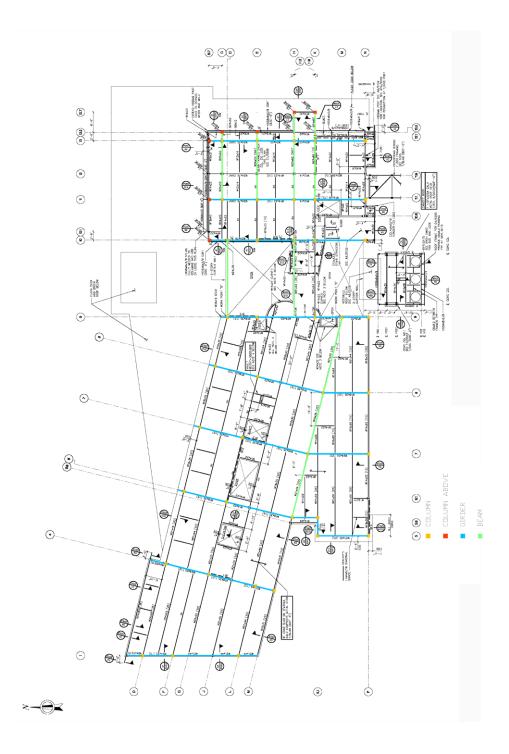


1	
,	Angela Snow Drift -
	Third Floor Roof - South side Section 7.7.1
	he < 0.2 => not required
	$\gamma = 0.13 p_3 + 14 - 30 pcf$
	= 0.13(45)+14 = 19.85 pcf < 30 pcf /
	$h_{b} = \frac{P_{5}}{\gamma} = \frac{35}{19.85} = 1.76'$
	hc= 18.33-1.76= 10.41'
-	$\frac{h_c}{h_b} = \frac{10.41}{1.76} = 5.9 \Rightarrow drift required$
	Leaward: (figure 79)
	-lu= 50'
	ha= 0.43 3 lu \$p_3+10-1.5
	= 0.43 350 145+10-1.5
	hd = 2.82 ft
	Windward: (figure 7-9)
	$l_{\rm LI}=35'$
	ha = [.43 \$35 \$45+10 - 1.5] (.75)
	$h_{d} = 1.75 A$
	\rightarrow ha= 2.82 A should be used in design
	$ha < hc \rightarrow w = 4ha = 4(a.8a) = 11.3ft$
	$h_{dy} = 2.82 (19.85) = 50 \text{ psf}$
. 🍝 ຊະ	82' 1.3' 1.3'
¢.	35'

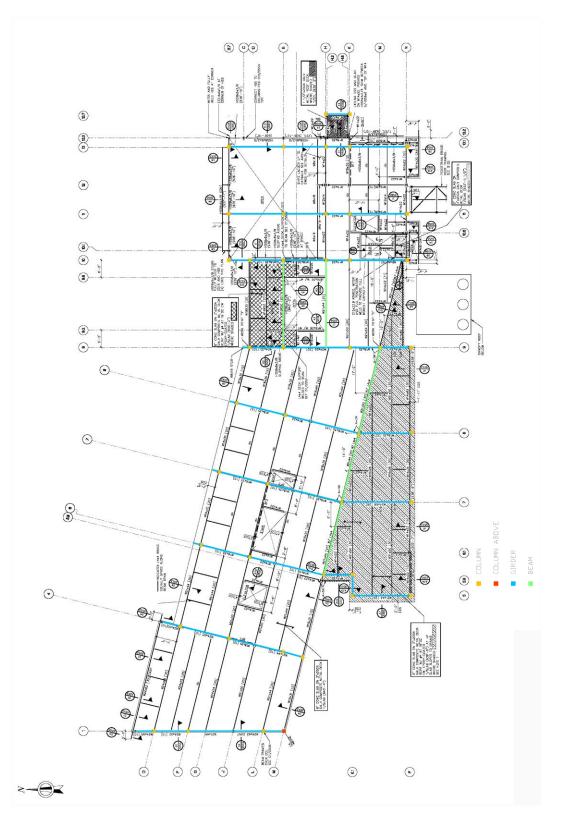
Structural


Appendix A.2: Framing Layouts

Gravity Framing for Level 1

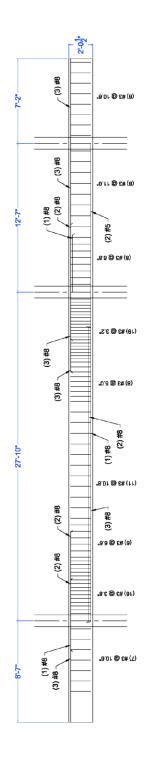


Structural

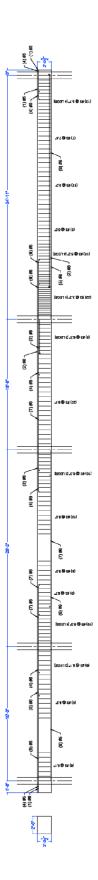

Gravity Framing for Level 1 with Designed Members Indicated

Framing Layout for Level 2

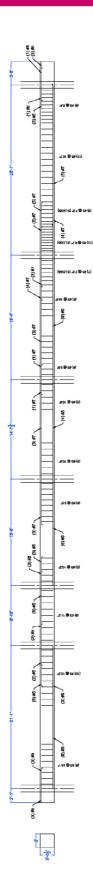
Framing Layout for Level 3



Framing Layout for Roof


Appendix A.3: Girder Designs

Level 1 Column Line 2 Girder



Level 1 Column Line 8 Girder

Level 1 Column Line 13 Girder

[2] Top

Тор ==== 02-03-2014, 02:10:11 PM

Appendix A.4: spBeam Output for Girders

Level 1 Column Line 2 Girder

spBeam v3.60 © StructurePoint Licensed to: Penn State University Park, License ID: 59919-1033950-4-22545-2CF68 E:\SPRING\Gravity\Girder Design\Column Line 2\Column Line 2 Girder.slb

. 1.	Girder Desi	. g (o o 1 a.								
	00 00 000	0 00 00 00 00 00 00		000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00000	0 00 000000 00 00 00 00	00 00 00	00 00 00 00 00 00 00 00	(TM)	
	A (Computer Reinfo Co	Program f orced Conc opyright ©	spBeam for Analysi crete Beams 1992-2013 All rights	v3.60 (TM s, Design and One- , STRUCTU reserved) , and In [.] way Slab REPOINT,	vestigati Systems LLC	on of		
for proce any warra by the sp program i analysis, STRUCTURE	sible for ssing by nty express Beam progra s not and design POINT disc design or	the spB sed nor am. Alth cannot and claims al	eam comp implied v ough STRU be cert enginee l respor	outer prog with respe JCTUREPOINT sified inf ering doc hsibility i	ram. Fur ct to t has end allible. uments n contra	thermore he corre eavored The fin is ct, negl:	. STRUCT ctness o to produc al and the li igence o	UREPOIN' f the c e spBea only re censee's r other	neither output p merror f sponsibil s. Accor tort for	makes repared ree the ity for dingly, any
DESIGN RESULTS										
DESIGN RESULTS Reinforcement hits: Width (f ban Zone	t), Mmax () Width	<pre>c-ft), Xm Mmax</pre>	nax (ft), Xmax	As (in^2), AsMin	Sp (in) AsMax	AsReq	SpProv	Bars		
DESIGN RESULTS Reinforcement hits: Width (f ban Zone	t), Mmax (} Width	<-ft), Xm Mmax	nax (ft), Xmax	As (in^2), AsMin	Sp (in) AsMax	AsReq	SpProv	Bars		
DESIGN RESULTS Reinforcement hits: Width (f Dan Zone	(t), Mmax (} Width 1.00 1.00 1.00 1.00	<pre>c-ft), Xm Mmax 23.94 82.47 195.09</pre>	nax (ft), Xmax 2.828 5.252 8.080	As (in^2), AsMin 0.378 0.900 0.900	Sp (in) AsMax 4.877 4.877 4.877 4.877	AsReq 	SpProv	Bars 3-#8 ⁴ 3-#8 ⁴ 4-#8		
Reinforcement nits: Width (f pan Zone 1 Left Midspan Right	t), Mmax () Width 1.00 1.00 2.78 2.78 2.78 2.78 1.26 1.26 1.26 1.26	<pre>c-ft), Xm Mmax 23.94 82.47 195.09 233.48 0.00 375.86 348.88 201.92 155.58</pre>	<pre>hax (ft), Xmax 2.828 5.252 8.080 0.500 13.915 27.330 0.500</pre>	As (in^2), AsMin 0.378 0.900 0.900	Sp (in) AsMax 	AsReq 0.238 0.837 2.066 2.512 0.000 4.323 4.039	SpProv 3.155 3.155 9.236 9.236 1.645 5.541 2.352	Bars 3-#8 4-#8 4-#8 6-#8 6-#8	*3 *3	
Reinforcement mits: Width (f pan Zone 1 Left Midspan Right 2 Left Midspan Right 3 Left Midspan Right 4 Left Midspan Right 4 Left Midspan Right 5 Left Midspan Right 7 Left 7 Lef	(t), Mmax () Width 1.00 1.00 2.78 2.78 2.78 2.78 1.26 1.26 1.26 1.26 1.00 1.00 1.00	<pre>c-ft), Xm Mmax 23.94 82.47 195.09 233.48 0.00 375.86 348.88 201.92 155.58 171.12 72.36 21.02</pre>	<pre>hax (ft),</pre>	As (in^2), AsMin 0.378 0.900 0.900 0.900 0.900 0.900 0.887 0.900 0.900 0.900 0.900 0.900 0.900 0.378	Sp (in) AsMax 4.877 4.877 4.877 4.877 4.877 4.877 4.877 4.877 4.877 4.877	AsReq 0.238 0.837 2.060 4.323 4.039 2.145 1.623 1.795 0.732	SpProv 3.155 3.155 9.236 9.236 1.645 5.541 2.352 4.703 4.703 3.155 3.155	Bars 3-#8 4-#8 4-#8 6-#8 6-#8	*3 2L	
Action Results Reinforcement mits: Width (f ban Zone 	(t), Mmax () Width 1.00 1.00 2.78 2.78 2.78 2.78 1.26 1.26 1.26 1.26 1.00 1.00 1.00	<pre>c-ft), Xm Mmax 23.94 82.47 195.09 233.48 0.00 375.86 348.88 201.92 155.58 171.12 72.36 21.02</pre>	<pre>hax (ft),</pre>	As (in^2), AsMin 0.378 0.900 0.900 0.900 0.900 0.900 0.887 0.900 0.900 0.900 0.900 0.900 0.900 0.378	Sp (in) AsMax 4.877 4.877 4.877 4.877 4.877 4.877 4.877 4.877 4.877 4.877 4.877	AsReq 0.238 0.837 2.060 4.323 4.039 2.145 1.623 1.795 0.732	SpProv 3.155 3.155 9.236 9.236 1.645 5.541 2.352 4.703 4.703 3.155 3.155	Bars 3-#8 3-#8 4-#8 4-#8 6-#8 3-#8 3-#8 3-#8 3-#8 3-#8	*3 2L	
Reinforcement mits: Width (f pan Zone 1 Left Midspan Right 2 Left Midspan Right 3 Left Midspan Right 4 Left Midspan Right 5 Left Midspan Right 9 Left 9 Left Midspan Right 9 Left 9 L	(t), Mmax () Width 1.00 1.00 1.00 2.78 2.78 2.78 1.26 1.26 1.26 1.26 1.00 1.00 1.00 1.00 1.00 1.00	<pre>c-ft), Xm Mmax 23.94 82.47 195.09 233.48 0.00 375.86 348.88 201.92 155.58 171.12 72.36 21.02 inimum re</pre>	ax (ft), Xmax 2.828 5.252 8.080 0.500 13.915 27.330 0.500 4.553 12.080 0.500 2.834 4.835 cinforceme	As (in^2), AsMin 0.378 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.378 ent.	Sp (in) AsMax 4.877 4.877 4.877 4.877 4.877 4.877 4.877 4.877 4.877 4.877 4.877 4.877 4.877	AsReq 0.238 0.837 2.066 2.512 0.000 4.323 4.039 2.145 1.623 1.795 0.732 0.209	SpProv 3.155 3.155 9.236 9.236 1.645 5.541 2.352 4.703 4.703 3.155 3.155 3.155	Bars 	*3 2L	
<pre>2 Left Midspan Right 3 Left Midspan Right 4 Left Midspan Right OTES: 3 - Design gov Bar Details =================================</pre>	(t), Mmax () Width 1.00 1.00 2.78 2.78 2.78 2.78 1.26 1.26 1.26 1.26 1.00 1.00 1.00 1.00 terned by mi	<pre>c-ft), Xm Mmax 23.94 82.47 195.09 233.48 0.00 375.86 348.88 201.92 155.58 171.12 72.36 21.02 inimum re</pre>	<pre>max (ft),</pre>	As (in^2), AsMin 0.378 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.378 ent.	Sp (in) AsMax 4.877 4.877 4.877 4.877 4.877 4.877 4.877 4.877 4.877 4.877 4.877 4.877 4.877	AsReq 0.238 0.837 2.066 2.512 0.000 4.323 4.039 2.145 1.623 1.795 0.732 0.209 Ri(Length	SpProv 3.155 3.155 9.236 9.236 9.236 1.645 5.541 2.352 4.703 4.703 3.155 3.155 3.155 3.155 .155	Bars 	*3 2L	

Bottom Reinforcement

2-#8

5.67

1-#8

4.80

3

4

		==							
Units: Span	Width (ft Width	:), Mmax (k Mmax			As (in^2), AsMax	Sp (in) AsReq	SpProv	Bars	
1	1.00	0.00	4.040	0.000	8.421	0.000	0.000		
2	1.00	399.45	12.842	0.873	22.962	4.149	2.104	6-#8	2L
3	1.00	18.14	7.152	0.381	11.481	0.178	6.576	2-#5	*3
4 NOTES:	1.00	0.00	3.835	0.000	7.343	0.000	0.000		

3-#8 12.58

3-#8 7.17

*3 - Design governed by minimum reinforcement.

spBeam v3.60 © StructurePoint Licensed to: Penn State University Park, License ID: 59919-1033950-4-22545-2CF68 E:\SPRING\Gravity\Girder Design\Column Line 2\Column Line 2 Girder.slb

02-03-2014, 02:10:11 PM

Page 2

Bottom Ba	r Detail					
Units:	Start (ft), Le	ngth (ft)			
	Lo	ong Bars		Sho	ort Bars	
Span	Bars	Start	Length	Bars	Start	Length
1						
2	3-#8	0.00	27.83	3-#8	0.00	24.77
3	2-#5	0.00	12.58			
4						

Flexural Capacity ===

Units: Span	x (ft), x	As (in AsTop	n^2), PhiMn AsBot	(k-ft) PhiMn-	PhiMn+
1	0.000 2.828 4.290 5.252 6.141 8.080 8.580	2.37 2.37 2.37 2.37 2.37 2.37 3.16 3.16	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-221.38 -221.38 -221.38 -221.38 -221.38 -221.38 -286.91 -286.91	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\end{array}$
2	0.000 0.500 1.078 3.435 5.116 7.473 9.890 13.915 17.939 19.831 21.3866 23.886 23.886 23.881 24.765 26.585 27.330 27.830	$\begin{array}{c} 3.16\\ 3.16\\ 1.58\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 2.37\\ 2.37\\ 3.17\\ 3.74\\ 4.74\\ 4.74\\ 4.74\end{array}$	$\begin{array}{c} 4 \ .74 \\ 4 \ .74 \\ 4 \ .74 \\ 4 \ .74 \\ 4 \ .74 \\ 4 \ .74 \\ 4 \ .74 \\ 4 \ .74 \\ 4 \ .74 \\ 4 \ .74 \\ 4 \ .74 \\ 4 \ .74 \\ 4 \ .74 \\ 4 \ .10 \\ 2 \ .80 \\ 2 \ .79 \\ 2 \ .37 \\ 2 \ .37 \\ 2 \ .37 \\ 2 \ .37 \end{array}$	$\begin{array}{c} -286.91\\ -286.91\\ -286.91\\ -151.71\\ -151.71\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ -221.38\\ -285.73\\ -405.58\\ -405.58\\ -405.58\\ -405.58\end{array}$	$\begin{array}{c} 455.02\\ 455.02\\ 455.02\\ 455.02\\ 455.02\\ 455.02\\ 455.02\\ 455.02\\ 455.02\\ 455.02\\ 396.81\\ 277.81\\ 277.29\\ 237.29\\ 237.29\\ 237.29\\ 237.29\end{array}$
3	0.000 0.500 1.373 4.553 4.797 5.669 6.290 8.027 12.080 12.580	4.74 4.74 4.74 4.58 2.83 2.69 2.37 2.37 2.37 2.37 2.37	0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62	- 398.47 - 398.47 - 398.47 - 388.63 - 259.25 - 248.46 - 221.38 - 221.38 - 221.38 - 221.38 - 221.38	62.89 62.89 62.89 62.89 62.89 62.89 62.89 62.89 62.89 62.89 62.89
4	0.000 0.500 2.834 3.585 4.835 7.170	2.37 2.37 2.37 2.37 2.37 2.37 2.37	0.00 0.00 0.00 0.00 0.00 0.00	-221.38 -221.38 -221.38 -221.38 -221.38 -221.38 -221.38	0.00 0.00 0.00 0.00 0.00 0.00

Longitudinal Beam Shear Reinforcement Required

Units: Span	d	PhiVc	Start	E), PhiVc, End	Vu	Xu	Av/s
1		25.61		2.068 4.137 7.830	12.36 24.72	2.068 4.137	
2	21.83	24.86	0.750 5.632 8.945 12.258 15.572 18.885 22.198	5.632 8.945 12.258 15.572 18.885 22.198 27.080	78.82 55.34 31.86 20.40 43.88 67.36 90.84	2.319 5.632 8.945 15.572 18.885 22.198 25.511	0.0549 0.0310 0.0100 0.0100 0.0194 0.0433 0.0672
3	22.17	25.23	0.750 4.976 7.604	4.976 7.604 11.830	53.78 34.15 29.38	2.347 4.976 10.233	0.0286 0.0100 0.0100
4	22.50	25.61	0.750	4.773	36.89	2.375	0.0111

0.112 2.000

0.223

0.332

0.332

0.444

spBeam v3.60 © StructurePoint 02-03-2014. 02:10:11 PM Licensed to: Penn State University Park, License ID: 59919-1033950-4-22545-2CF68 E:\SPRING\Gravity\Girder Design\Column Line 2\Column Line 2 Girder.slb 4.773 7.170 18.44 4.773 0.0100 Longitudinal Beam Shear Reinforcement Details Units: spacing & distance (in). Span Size Stirrups (2 legs each unless otherwise noted) 1 #3 <-- 21.8 --> + 7 @ 10.6 2 #3 16 @ 3.8 + 6 @ 6.6 + 11 @ 10.8 + 8 @ 5.0 + 19 @ 3.2 3 #3 8 @ 6.8 + 8 @ 11.0 4 #3 8 @ 10.6 Beam Shear Capacity Units: d, Sp (in), Start, End, Xu (ft), PhiVc, PhiVn, Vu (kip), Av/s (in^2/in) Span d PhiVc Start End Av/s Sp PhiVn Vu Xu Xu -----0.000 0.250 _ _ _ _ _ 12.81 0.250 1 22.50 25.61 1.49 0.250 2.068 2.068 ____ ____ 12.81 46.56 12.36 37.08 2.068 0.0207 10.6 6.205 7.830 8.580 46.56 37.08 6.205 0.000 0.750 2 21.83 24.86 82.04 78.82 2.319 _ _ _ _ _ 3.8 0.750 5.632 0.0582 82.04 57.48 78.82 2.319 8.945 0.0332 6.6 55.34 5.632 44.79 68.35 93.11 0.0203 43.88 8.945 18.885 10.8 18.885 22.198 22.198 18.885 5.0 3.2 22.198 27.080 0.0695 90.84 25.511 -----27.830 25.511 ----93.11 90.84 3 22.17 25.23 0.000 0.750 ____ 57.69 53.78 2.347 0.750 4.976 11.830 0.0325 6.8 57.69 45.25 53.78 34.15 2.347 4.976 0.0201 11.0 11.830 12.580 45.25 29.38 10.233 0.000 0.750 46.67 36.89 2.375 4 22.50 25.61 6.920 0.750 0.0208 10.6 46.67 36.89 2.375 6.920 7.170 46.67 1.92 6.920 Slab Shear Capacity Units: b, d (in), Xu (ft), PhiVc, Vu(kip) Span b d Vratio Ph pan b d Vratio PhiVc Vu Xu 1 --- Not checked ---2 --- Not checked ---3 --- Not checked ---4 --- Not checked ---Deflections Section properties _Load Level_____ ___Dead+Live_____ ___Ie Units: Ig, Icr, Ie (in^4), Mcr, Mmax (k-ft) ______Ie,avg_____ Span _____Dead ____Ead+Live Zone .______Ie,avy_____ Dead Dead+Live ∠... 8135 7259 Right 11954 Left Midspan _____Dead______Ie Mmax Ig Icr Mcr 8135 -160.31 7591 -203.38 1 14706 7061 47.45 -91.30 2 14706 7061 47.45 -115.53 69.24 47.45 146.27 -157.50 30610 13180 15029 259.03 Right 14706 9450 9593 -278.88 3 18954 18555 Left 47.45 60.86 47.45 9351 -246.18 14706 9130 -139.040.00 Midspan 23211 2102 0.00 23211 -68.42 Right 14706 5676 8689 4 7486 6000 Left 14706 5676 47.45 -81.09 7486 -143.86 Maximum Instantaneous Deflections Units: D (in) Dlive Ddead Dtotal Span -0.091 -0.073 1 -0.164 2 0.261 0.233 0.494 -0.029 -0.024 -0.053 4 0.112 0.109 0.221 Maximum Long-term Deflections Time dependant factor for sustained loads = 2.000 Units: D (in) Dsust Lambda Dcs Dcs+lu Dcs+1 Dtotal Span -----0.091 2.000 -0.183 -0.256 -0.256 -0.347 1 0.261 2.000 -0.029 2.000 0.522 0.755 0.755 1.016 -0.111 2

Page 3

7259

7158

13513

9476

9170

23211

6215

6000

spBeam v3.60 © StructurePoint Licensed to: Penn State University Park, License ID: 59919-1033950-4-22545-2CF68 E:\SPRING\Gravity\Girder Design\Column Line 2\Column Line 2 Girder.slb 02-03-2014, 02:10:11 PM Page 4

Material Takeoff

Reinforcement	in the I	irecti	on (of Anal	ysis			
Top Bars:	419.8	1b <	<=>	7.48	lb/ft	<=>	0.334	lb/ft^2
Bottom Bars:	447.5	lb <	<=>	7.97				lb/ft^2
Stirrups:	173.9			3.10				lb/ft^2
Total Steel:	1041.3			18.54				lb/ft^2
Concrete:	565.2	ft^3 <	<=>	10.06	ft^3/ft	<=>	0.449	ft^3/ft^2

Level 1 Column Line 8 Girder

spBeam v3.60 © StructurePoint	
Licensed to: Penn State University Park, License ID:	59919-1033950-4-22545-2CF68
E:\SPRING\Gravity\Girder Design\Column Line 8\Column	Line 8 Girder.slb

02-03-2014, 04:14:16 PM

Page 1

				0000	000								
				00	00								
000	000	0000	000	00	00	000	000	00	000	0 000	00000	000	
00	0	00	00	00	00	00	00	0	00	00	00	00	
00		00	00	0000	0000	00	00	00	0000	00	00	00	
000	000	00	00	00	00	00	00	00	00	00	00	00	
	00	0000	000	00	00	0000	00	00	00	00	00	00	
0	00	00		00	00	00	0	00	00	00	00	00	
000	000	00		0000	0000	000	000	00	0 000	00	00	00	(TM)

____ _____ spBeam v3.60 (TM) A Computer Program for Analysis, Design, and Investigation of Reinforced Concrete Beams and One-way Slab Systems Copyright © 1992-2013, STRUCTUREPOINT, LLC All rights reserved

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spBeam computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spBeam program. Although STRUCTUREPOINT has endeavored to produce spBeam error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spBeam program. program.

[2] DESIGN RESULTS

Top Reinforcement

Units: Width (ft), Mma ıx (k-ft). Xma x (ft), As (in^2), Sp (in)

Units: Width Span Zone	(ft), Mmax Width	(k-ft), Xr Mmax			, Sp (in) AsMax	AsReq	SpProv	Bars
1 Left Midspan Right	2.50 2.50 2.50 2.50	0.85 2.80 6.51	0.409 0.760 1.170	0.950 0.950 0.950	12.260 12.260 12.260 12.260	0.008 0.027 0.064	8.162 8.162 6.122	
2 Left Midspan Right	2.50	1.93 134.17 564.66	0.500 12.363 18.750	0.950 1.784 2.263	12.260 12.260 12.260 12.260	0.019 1.341 6.017	6.122 6.122 1.884	
3 Left	2.82	575.93	0.500	2.263	12.260	6.148	2.176	14-#6
Midspan	2.82	0.00	14.085	0.000	12.294	0.000	0.000	
Right	2.82	369.43	27.670	2.250	12.192	3.842	4.052	7-#8
4 Left	2.50	361.75	0.500	2.250	12.192	3.757	4.052	7-#8
Midspan	2.50	483.61	11.986	2.250	12.192	5.119	4.052	7-#8
Right	2.50	949.30	18.170	2.236	12.115	11.039	2.587	15-#8
5 Left	3.49	987.87	0.500	2.250	12.192	11.479	2.587	15-#8
Midspan	3.49	0.00	17.460	0.000	12.294	0.000	0.000	
Right	3.49	92.02	34.420	1.213	12.294	0.912	9.120	5-#5 *3 *5
6 Left	2.50	0.37	0.500	0.953	12.294	0.004	9.120	5-#5 *3
Midspan	2.50	0.17	0.588	0.953	12.294	0.002	8.192	4-#5 *3
Right	2.50	0.06	0.662	0.953	12.294	0.001	8.192	4-#5 *3

NOTES: *3 - Design governed by minimum reinforcement. *5 - Number of bars governed by maximum allowable spacing.

Top Bar Details

Units: Length (ft)

		Left			Conti	nuous	Right				
Span –	Bars	Length	Bars	Length	Bars	Length	Bars	Length	Bars	Length	
1					4-#6	1.67	1-#6	1.67			
2					5-#6	19.25	5-#6	6.94	4-#6	3.64	
3	7-#6	8.63	7-#6	4.45			4-#8	5.91	3-#8	2.87	
4					7-#8	18.67	4-#8	7.83	4-#8	4.77	
5	8-#8	8.39	8-#8	4.94			4-#5	3.30	1-#5	2.19	
6	1-#5	0.75			4-#5	0.75					

Bottom Reinforcement

spBeam v3.60 © StructurePoint Licensed to: Penn State University Park, License ID: 59919-1033950-4-22545-2CF68 E:\SPRING\Gravity\Girder Design\Column Line 8\Column Line 8 Girder.slb

Units: Width (ft), Mmax (k-ft), Xmax (ft), As (in^2), Sp (in) Span Width Mmax Xmax AsMin AsMax AsReq SpProv Bars 0.00 0.585 0.000 12.294 0.000 1 2.50 0.000 ---2 2.50 245.99 7.500 2.269 19.370 2.450 3.511 8-#5 2.50 536.71 15.172 2.263 26.160 5.406 2.041 13-#6 3 2.50 0.00 9.335 0.000 18.926 0.000 0.000 ---4 2.50 1077.77 19.495 2.223 30.408 11.266 5 2.026 15-#8 2L 2.50 0.00 0.625 0.000 12.294 0.000 0.000 ---6

Bottom Bar Details

Units: Start (ft), Length (ft)

Units:	Start (ft), Le	ngth (ft)			
	Lo	ong Bars		Sho	rt Bars	
Span 🦳	Bars	Start	Length	Bars	Start	Length
1						
2	8-#5	0.00	19.25			
3	7-#6	0.00	28.17	6-#6	5.79	18.62
4						
5	8-#8	0.00	34.92	7-#8	4.73	30.19
6						

Flexural Capacity

Units: Span	x (ft), x	As (ir AsTop		iMn (k-ft) PhiMn-	PhiMn+
1	0.000 0.409 0.760 0.835 1.000 1.170 1.670	2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20	0.00 0.00 0.00 0.00 0.00 0.00 0.00	-217.58 -217.58 -217.58 -217.58 -217.58 -217.58 -217.58 -217.58	0.00 0.00 0.00 0.00 0.00 0.00 0.00
2	0.000 0.500 6.887 9.625 12.307 12.363 15.074 15.615 18.382 18.750 19.250	2.20 2.20 2.20 2.20 2.24 4.40 6.16 6.16	2.48 2.48 2.48 2.48 2.48 2.48 2.48 2.48	$\begin{array}{c} -217.58\\ -217.58\\ -217.58\\ -217.58\\ -217.58\\ -221.82\\ -422.35\\ -422.35\\ -422.35\\ -576.94\\ -576.94\end{array}$	248.96 248.96 248.96 248.96 248.96 248.96 248.96 248.96 248.96 248.96 248.96
3	$\begin{array}{c} 0.000\\ 0.500\\ 2.001\\ 4.448\\ 5.789\\ 6.187\\ 8.261\\ 8.635\\ 10.009\\ 14.085\\ 18.161\\ 2.263\\ 24.322\\ 24.409\\ 25.298\\ 27.570\\ 28.170\\ \end{array}$	$\begin{array}{c} 6.16\\ 6.16\\ 3.08\\ 3.08\\ 3.08\\ 0.47\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 3.16\\ 3.16\\ 3.16\\ 3.16\\ 3.553\\ 5.53\\ 5.53\\ 5.53\\ \end{array}$	3.08 3.08 3.08 3.08 3.51 5.72 5.37 3.08 3.08 3.08 3.08 3.08 3.08 3.08 3.08 3.08 3.08 3.08 3.08	$\begin{array}{c} -576.94\\ -576.94\\ -301.03\\ -301.03\\ -301.03\\ -47.59\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ -306.73\\ -306.73\\ -306.73\\ -306.73\\ -519.44\\ -519.44\\ -519.44\end{array}$	309.13 309.13 309.13 309.13 351.10 567.00 57.000 57.0000
4	0.000 0.500 6.684 9.335 10.839 11.986 13.898 15.109	5.53 5.53 5.53 5.53 5.53 6.38 7.79 9.59	0.00 0.00 0.00 0.00 0.00 0.00 0.00	-519.44 -519.44 -519.44 -519.44 -519.44 -591.97 -708.74 -844.93	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

02-03-2014, 04:14:16 PM

Page 2

spBeam v3.60 © StructurePoint Licensed to: Penn State University Park, License ID: 59919-1033950-4-22545-2CF68 E:\SPRING\Gravity\Girder Design\Column Line 8\Column Line 8 Girder.slb

18.169 11.85 0.00 -999.74 0.00 18.170 11.85 0.00 18.670 11.85 0.00 -999.74 -999.74 0.00 5 0.000 12.64 6.32 -1039.64 624.35 0.500 12.64 6.32 0.501 12.64 6.32 -1039.64 -1039.64 624.35 624.35 3.945 4.733 4.942 7.74 6.32 5.50 6.32 4.90 6.53 0.00 9.95 0.00 11.85 624.35 624.35 643.83 -704.24 -516.62 -464.51 959.62 1130.93 1130.93 1130.93 0.00 8.386 0.306 10.298 12.372 17.460 22.548 31.622 0.00 11.85 0.00 11.85 0.00 0.00 11.85 0.00 11.85 0.00 1130.93 1130.93
 31.622
 1.24
 11.85

 32.622
 1.24
 11.85

 32.731
 1.24
 11.85

 33.731
 1.55
 11.85

 34.420
 1.55
 11.85

 34.920
 1.55
 11.85
 1130.93 1130.93 1130.93 1130.93 1130.93 -124.56 -155.07 -155.07 -155.07 1130.93 6 0.000 1.55 0.00 -155.07 0.00 1.55 1.55 1.55 1.55 1.55 -155.07 -155.07 -155.07 -155.07 0.375 0.00 0.00 0.588 0.662 0.750 0.00 0.00 1.55 0.00 -155.07 0.00

Longitudinal Beam Shear Reinforcement Required

Units: Span	d (in), d	Start, Er PhiVc	nd, Xu (ft Start), PhiVc, End	Vu (kip) Vu	, Av/s Xu	(in^2/in) Av/s
1	22.63	64.39	0.000	0.920	0.00	0.000	0.0000
2	22.63	64.39	0.750 4.454 6.522 8.591 10.659 12.728 14.796	4.454 6.522 8.591 10.659 12.728 14.796 18.500	50.39 30.26 22.23 41.48 61.61 81.74 101.87	2.385 4.454 8.591 10.659 12.728 14.796 16.865	0.0250 0.0000 0.0000 0.0250 0.0250 0.0250 0.0250 0.0368
3	22.50	64.04	0.750 5.721 9.066 12.412 15.758 19.104 22.449	5.721 9.066 12.412 15.758 19.104 22.449 27.420	125.19 92.63 60.07 27.50 45.39 77.95 110.51	2.375 5.721 9.066 12.412 19.104 22.449 25.795	0.0604 0.0282 0.0250 0.0000 0.0250 0.0250 0.0250 0.0459
4	22.50	64.04	0.750 4.695 7.015 9.335 11.655 13.975	4.695 7.015 9.335 11.655 13.975 17.920	47.12 38.58 48.99 68.54 88.66 108.78	2.375 7.015 9.335 11.655 13.975 16.295	0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0442
5	22.23	63.28	0.750 6.669 10.985 15.302 19.618 23.935 28.251	6.669 10.985 15.302 19.618 23.935 28.251 34.170	191.95 142.69 95.11 48.66 46.21 92.10 137.99	2.353 6.669 10.985 15.302 23.935 28.251 32.567	0.1286 0.0794 0.0318 0.0250 0.0250 0.0288 0.0288 0.0747
6	22.69	64.57	0.750	0.750	0.00	0.750	0.0000

Longitudinal Beam Shear Reinforcement Details

Units: spacing & distance (in).

Span Size Stirrups (2 legs each unless otherwise noted)

#5 --- None ---1

- 3
- #5 --- None ---#3 6 @ 8.1 + <-- 49.6 --> + 9 @ 8.3 + 6 @ 8.1 [3L] #3 10 @ 6.3 [4L] + 6 @ 6.7 + 5 @ 8.0 + <-- 40.1 --> + 10 @ 8.0 + 10 @ 6.3 [3L] #3 20 @ 8.1 + 8 @ 6.3 [3L] #3 22 @ 3.3 [4L] + 10 @ 5.2 [4L] + 8 @ 6.5 + 13 @ 8.0 + 7 @ 7.4 + 13 @ 5.7 [4L] #5 --- None ---5 #5 --- None

Beam Shear Capacity

Units:	d, Sp (i	n), Start,	End, Xu	(ft), Ph	iVc, PhiVn,	Vu (ki	ip), Av/s	(in^2/in)	
Span	d	PhiVc	Start	End	Av/s	Sp	PhiVn	Vu	Xu
1	22.63	64.39	0.000	1.670			32.20	0.00	0.000

Page 3

02-03-2014, 04:14:16 PM

spBeam v3.60 © StructurePoint Licensed to: Penn State University Park, License ID: 59919-1033950-4-22545-2CF68 E:\SPRING\Gravity\Girder Design\Column Line 8\Column Line 8 Girder.slb

02-03-2014, 04:14:16 PM

Page 4

2	22.63	64.39	0.750 4.454	0.750 4.454 8.591 14.796 18.500 19.250	0.0272	8.1 8.3 8.1	92.11 92.11 32.20 91.46 105.97 105.97	50.39 30.26 81.74 101.87	2.385 2.385 4.454 14.796 16.865 16.865		
3	22.50	64.04	0.000 0.750 5.721 9.066 12.412 15.758 22.449 27.420	0.750 5.721 9.066 12.412 15.758 22.449 27.420 28.170	0.0701 0.0329 0.0274 0.0274 0.0526 	6.3 6.7 8.0 8.0 6.3	134.99 134.99 97.32 91.78 32.02 91.78 117.25 117.25	27.50 77.95 110.51	2.375 2.375 5.721 9.066 12.412 22.449 25.795 25.795		
4	22.50	64.04	13.975			8.1 6.3	91.41 91.41 116.97 116.97	108.78			
5	22.23	63.28	10.985 15.302 23.935 28.251	0.750 6.669 10.985 15.302 23.935 28.251 34.170 34.920	0.1332 0.0849 0.0340 0.0276 0.0297 0.0774	3.3 5.2 6.5 8.0 7.4 5.7	196.53 196.53 148.27 97.27 90.90 93.02 140.75 140.75	191.95 191.95 142.69 95.11 48.66 92.10 137.99 137.99	2.353 2.353 6.669 10.985 15.302 28.251 32.567 32.567		
6	22.69	64.57	0.000	0.750				0.00			
	r Capacity										
	b, d (in) b					Vu	>	(u			
4 5 6	Not che Not che Not che Not che	cked cked	-								
4 5 6 Election Section Units:	Not che Not che Not che ma Ig, Icr, Te	cked cked cked es Ie (in^	- - 4), Mcr, 1						Load	Dead+	Live
4 5 6 Election Section Units:	Not che Not che Not che n properti Ig, Icr,	cked cked cked le (in^ avg Dead	- - 4), Mcr, 1 +Live Zon	e	Iq	Icr	Mcr	Mmax	DeadIe	Dead+ Mmax	LiveIe
4 5 6 Election Section Units: Span	Not che Not che Not che ns 	cked cked cked le (in^ avg Dead	- - 4), Mcr, 1 +Live Zon	e	Iq	Icr 6377 6377 7731 14804	Mcr 118.63 118.63 137.46 118.63	Mmax	DeadIe	Dead+ Mmax	LiveIe
4 5 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Not che Not che Not che Ig, Icr, Ie, Dead 	cked cked cked le (in^ avg Dead	- - 4), Mcr, 1 +Live Zon	e	Iq	Icr 6377 7731 14804 14804 16767 13448	Mcr 118.63 118.63 137.46 118.63 118.63 148.90 118.63 118.63	Mmax	DeadIe	Dead+ Mmax	LiveIe
4 5 6 Election Section Units: Span 1 2	Not che Not che Not che m 	cked cked cked le (in^ avg Dead	- - 4), Mcr, 1 +Live Zon	e	Iq	Icr 6377 6377 14804 14804 14804 14804 13448 47059 22983 24698 300708	Mcr 118.63 118.63 137.46 118.63 118.63 118.63 118.63 118.63 118.63 118.63	Mmax	DeadIe	Dead+ Mmax	LiveIe
4 5 6 Election Section Units: Span 2 3 4 5	Not che Not che Not che Not che 	cked cked cked le (in^ avg Dead	- - 4), Mcr, 1 +Live Zon	e	Iq	Icr 6377 7731 14804 14804 13448 13448 13448 13448 3348 30728 4731 4731	Mcr 118.63 118.63 118.63 118.63 118.63 148.90 118.63 136.54 118.63 118.63 118.63 118.63 118.63 118.63 118.63	Mmax	DeadIe	Dead+ Mmax	LiveIe
4 5 6 Election Units: Span 1 2 3 4 5 6	Not che Not che Not che Not che Ig, Icr, Ie, Je, 36765 41350 28101 41922 31046	cked cked cked es Ie (in^ avg Dead	4), Mcr, 1 +Live Zon 	e ht span ht span ht t span ht t span ht t span ht	Iq	Icr 6377 7331 14804 14804 13448 13448 47059 22989 22989 22989 24698 30728 4731	Mcr 118.63 118.63 137.46 118.63 118.63 148.90 118.63 118.63 118.63 118.63 118.63 118.63 118.63 118.63	Mmax	DeadIe	Dead+ Mmax	LiveIe
4 5 6 Units: Span 1 2 3 4 5 6 Maximum Units:	Not che Not che Not che Not che 	cked cked cked es Ie (in^ avg Dead 	4), Mcr, 1 +Live Zon 	e ht span ht span ht span ht t span ht t span ht t	Iq	Icr 6377 6377 7731 14804 14804 16767 13448 4705 22983 24698 30728 4731 4731	Mcr 118.63 118.63 137.46 118.63 148.63 118.63 136.63 136.63 136.40 118.63 154.40 118.63 118.63	Mmax	DeadIe	Dead+ Mmax	LiveIe
4 5 6 Election Units: Span 1 2 3 4 5 6 Maximun Units: Span Units:	Not che Not che Not che ig, Icr, Ig, Icr, Dead 36765 41350 28101 41922 31046 36765 n Instanta D (in) Ddead	cked cked cked Es Ie (in^ avg Dead Dead Date Dive	4), Mcr, 1 +Live Zon- 	e ht span ht span ht span ht t span ht t span ht t	Iq	Icr 6377 7731 14804 14804 13448 13448 47059 22989 22989 22983 24698 30728 4731	Mcr 118.63 118.63 137.46 118.63 118.63 118.63 118.63 118.63 118.63 118.63 118.63 118.63	Mmax	DeadIe	Dead+ Mmax	LiveIe
4 5 6 Units: Span 1 2 3 4 5 6 Maximun Units: 5 6 Maximun Units: 5 6 4 5 6	Not che Not che Not che Not che 	cked cked cked le (in^ avg 	4), Mcr, 1 +Live Zon- 	e ht span ht span ht span ht t span ht t span ht t	Iq	Icr 6377 6377 7731 14804 14804 16767 13448 47069 22983 22693 30728 30728 4731 4731	Mcr 118.63 118.63 118.63 118.63 118.63 118.63 118.63 118.63 118.63 118.63 118.63 118.63 118.63	Mmax	DeadIe	Dead+ Mmax	LiveIe
4 5 6 Units: Span 1 2 3 4 5 6 Maximun Units: Span 1 2 3 4 5 6 Maximun 	Not che Not che Not che Not che Not che 	cked cked cked le (in^ avg	4), Mcr, 1 +Live Zon- 	e ht span ht span ht span ht t span ht t span ht t	Iq	Icr 6377 7731 14804 14804 13448 13448 47059 22983 2498 30728 4731 4731	Mcr 118.63 118.63 137.46 118.63 118.63 118.63 118.63 118.63 118.63 118.63 118.63 118.63	Mmax	DeadIe	Dead+ Mmax	LiveIe
4 5 6 Units: Span 1 2 3 4 5 6 Maximun 1 2 3 4 5 6 Maximun 1 2 3 4 5 6 Maximun 1 2 3 4 5 6 6 Maximun 1 2 3 4 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Not che Not che Not che Not che 	cked cked cked le (in^ avg	4), Mcr, 1 +Live Zon- 	e ht span ht span ht t span ht t t span ht t	Ig 36765 36765 36765 36765 36765 36765 36765 36765 36765 36765 36765 36765	Icr 6377 6377 7731 14804 16767 13448 13448 47059 22983 24698 30728 4731 4731	Mcr 118.63 118.63 118.63 118.63 118.63 118.63 118.63 118.63 118.63 118.63 118.63 118.63 118.63	Mmax	DeadIe	Dead+ Mmax	LiveIe
4 5 6 Units: Span 1 2 3 4 5 6 Maximun Junits: Span 1 2 3 4 5 6 Maximun Junits: Span 1 2 3 4 5 5 6 Maximun Time de Units:	Not che Not che Not che Not che Not che 	cked cked cked le (in^ avg	4), Mcr, 1 +Live Zon- 	e t span ht t span ht t span ht t span ht t so 	Ig 36765 36765 36765 55571 36765 36765 36765 36765 36765 36765 36765 36765 36765	6377 6377 7731 14804 16767 13448 13448 47059 22983 24698 30728 4731 4731	Mcr 118.63 118.63 118.63 118.63 118.63 118.63 118.63 118.63 118.63 118.63 118.63 118.63 118.63 118.63	Mmax	DeadIe	Dead+ Mmax	LiveIe

02-03-2014, 04:14:16 PM

Page 5

	to: Penn	State T	Jniversity			59919-1033950-4-22545-2CF68 Line 8 Girder.slb
2 3 4 5 6		2.000	-0.233	0.029 0.604 -0.291 2.087 -0.143	0.029 0.604 -0.291 2.087 -0.143	0.040 0.796 -0.408 2.938 -0.201

Material Takeoff

Reinforcement in the Direction of Analysis

Top Bars:	1242.9 lb	<=>	12.02	lb/ft	<=>	0.444	lb/ft^2
Bottom Bars:	1934.7 lb	<=>	18.71	lb/ft	<=>	0.692	lb/ft^2
Stirrups:	699.0 lb	<=>	6.76	lb/ft	<=>	0.250	lb/ft^2
Total Steel:	3876.7 lb	<=>	37.48	lb/ft	<=>	1.386	lb/ft^2
Concrete:	1480.1 ft^3	<=>	14.31	ft^3/ft	<=>	0.529	ft^3/ft^2

Level 1 Column Line 13 Girder

spBeam v3.60 © St:	ructurePoint		
Licensed to: Penn	. State University Park	, License ID: S	59919-1033950-4-22545-2CF68
E:\SPRING\Gravity'	\Girder Design\Column	Line 13\Column	Line 13 Girder.slb

02-04-2014, 04:23:13 PM

Page 1

				0000	000								
				00	00								
000	000	0000	000	00	00	000	000	000	000	0 000	00000	000	
00	0	00	00	00	00	00	00	0	00	00	00	00	
00		00	00	0000	000	00	00	000	0000	00	00	00	
000	000	00	00	00	00	00	00	00	00	00	00	00	
	00	0000	000	00	00	0000	00	00	00	00	00	00	
0	00	00		00	00	00	0	00	00	00	00	00	
000	000	00		0000	0000	000	000	000	0 000	00	00	00	(TM)

spBeam v3.60 (TM) A Computer Program for Analysis, Design, and Investigation of Reinforced Concrete Beams and One-way Slab Systems Copyright © 1992-2013, STRUCTUREPOINT, LLC All rights reserved

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spBeam computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spBeam program. Although STRUCTUREPOINT has endeavored to produce spBeam error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spBeam program. program.

[2] DESIGN RESULTS

Top Reinforcement

Units: Width (ft), Mmax (k-ft), Xmax (ft), As (in^2), Sp (in)

Span Zone	Width	(k-it), Ar Mmax	nax (It), Xmax	As (1n^2), AsMin	Sp (in) AsMax	AsReq	SpProv	Bars		
l Left Midspan	2.00	1.11 3.71 8.67		0.762 0.762 0.762 0.762	9.835 9.835 9.835 9.835	0.011 0.036 0.085	9.288 9.288 9.288	3-#5	*3	
2 Left Midspan Right	2.11 2.11 2.11	15.82 0.00 216.69	0.500 10.540 20.580	0.762 0.000 1.815	9.835 9.835 9.835	0.155 0.000 2.201	9.936 0.000 2.839	3-#5 8-#5	-	
3 Left Midspan Right	2.00 2.00 2.00	214.44 126.66 82.66	0.500 3.240 5.590	1.815 1.685 1.091	9.835 9.835 9.835	2.177 1.267 0.821	2.654 3.715 3.715	8-#5 6-#5 6-#5	*3	
4 Left Midspan Right	2.00 2.00 2.00	70.43 0.00 126.36	0.500 7.835 15.170	0.928 0.000 1.690	9.835 9.835 9.781	0.698 0.000 1.271	3.715 0.000 9.200	6-#5 3-#7		
5 Left Midspan Right	2.00 2.00 2.00	126.72 35.98 159.62	0.500 9.360 14.130	1.695 0.758 1.805	9.781 9.781 9.781	1.275 0.356 1.615	9.200 9.200 6.133	3-#7	*3 *	5
6 Left Midspan Right	2.00 2.00 2.00	151.87 85.50 501.25	0.500 11.765 17.830	1.805 1.136 1.805	9.781 9.781 9.781	1.534 0.854 5.415	6.133 9.200 2.044			5
7 Left Midspan Right	2.51 2.51 2.51	512.63 0.00 70.28	0.500 12.540 24.580	1.805 0.000 0.926	9.781 9.835 9.835	5.551 0.000 0.696	2.722 0.000 8.224	10-#7 4-#5	*3 *	5
8 Left Midspan Right NOTES:	2.00 2.00 2.00	42.62 18.06 5.27	0.500 1.522 2.398	0.762 0.762 0.762	9.835 9.835 9.835	0.420 0.177 0.052	8.224 9.288 9.288	3-#5	*3	

Noiss:
 *3 - Design governed by minimum reinforcement.
 *5 - Number of bars governed by maximum allowable spacing.

Top Bar Details

Units: Length (ft)

0111 00.	. Deligen	Left		Cont	inuous		Right			
Span -	Bars		Bars Length		Length	Bars	Length		Length	
1				3-#5	2.08					
2	3-#5	2.89				6-#5	5.86	2-#5	2.80	
3	2-#5	3.03		6-#5	8.83					

spBeam v3.60 © StructurePoint Licensed to: Penn State University Park, License ID: 59919-1033950-4-22545-2CF68 E:\SPRING\Gravity\Girder Design\Column Line 13\Column Line 13 Girder.slb

02-04-2014, 04:23:13 PM

Page 2

4	3-#5	4.13	3-#5	1.94			3-#7	6.61		
5					3-#7	14.63	1-#7	2.08		
6	1-#7	2.07			3-#7	18.33	4-#7	6.50	3-#7	4.51
7	5-#7	7.59	5-#7	4.08			3-#5	3.38	1-#5	2.17
8	1-#5	2.39			3-#5	3.42				

Bottom Reinforcement

-			_						
	Units: Span	Width (ft) Width), Mmax (k Mmax	-ft), Xmax Xmax	(ft), AsMin	As (in^2), AsMax	Sp (in) AsReq	SpProv	Bars
	1	2.00	0.00	0.790	0.000	9.835	0.000	0.000	
	2	2.00	252.07	9.177	1.815	19.841	2.508	2.322	9-#5
	3	2.00	0.00	4.415	0.000	10.470	0.000	0.000	
	4	2.00	125.68	7.462	1.654	15.703	1.244	3.715	6-#5 *3
	5	2.00	84.94	7.687	1.115	14.907	0.838	6.192	4-#5 *3
	6	2.00	166.26	7.680	1.815	17.737	1.648	3.715	6-#5 *3
	7	2.00	484.10	14.154	1.805	22.847	4.892	2.300	9-#7
	8 NOTES.	2.00	0.00	1.960	0.000	9.835	0.000	0.000	

NOTES: *3 - Design governed by minimum reinforcement.

Bottom Bar Details

Units: Start (ft), Length (ft)

UNLUS.		ong Bars	ngun (It)		Short Bars							
Span –	Bars	Start	Length	Bars	Start	Length						
1												
2	6-#5	0.00	21.08	3-#5	0.00	15.38						
3												
4	6-#5	0.00	15.67									
5	4-#5	0.00	14.63									
6	6-#5	0.00	18.33									
7	5-#7	0.00	25.08	4 - #7	4.57	20.51						
8												

Flexural Capacity

Units: Span			n^2), Phi№ AsBot	In (k-ft) PhiMn-	PhiMn+
1	0.000 0.553 1.027 1.040 1.580 2.080	0.93	0.00 0.00 0.00 0.00 0.00 0.00	-93.52 -93.52 -93.52 -93.52 -93.52 -93.52 -93.52	0.00 0.00 0.00 0.00 0.00
2	0.000 0.500 1.886 2.886 7.528 10.540 13.552 13.946 15.219 15.381 16.377 18.275 19.434 20.580 21.080	$\begin{array}{c} 0.93\\ 0.93\\ 0.93\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.26\\ 1.86\\ 1.86\\ 2.48\\ 2.48\\ 2.48\\ 2.48\end{array}$	2.79 2.79 2.79 2.79 2.79 2.79 2.79 2.79	$\begin{array}{c} -93.52\\ -93.52\\ -93.52\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ -26.44\\ -184.17\\ -184.17\\ -184.17\\ -243.02\\ -243.02\\ -243.02\end{array}$	279.95 279.95 279.95 279.95 279.95 279.95 279.95 198.19 187.72 187.72 187.72 187.72 187.72
3	0.000 0.500 1.802	2.48 2.48 2.48	0.00 0.00 0.00	-243.02 -243.02 -243.02	0.00 0.00 0.00

spBeam v3.0				to Doub Ligor		000050 4 00545 0	CTC 0
				Column Line 13.		1033950-4-22545-2 13 Girder.slb	CEGO
	-		-				
	3.028	1.86	0.00	-184.17	0.00		
	3.240	1.86	0.00	-184.17	0.00		
	4.415	1.86	0.00	-184.17	0.00		
	5.590	1.86	0.00	-184.17	0.00		
	8.330	1.86	0.00	-184.17	0.00		
	8.830	1.86	0.00	-184.17	0.00		
4	0.000	1.86	1.86	-184.17	186.97		
	0.500	1.86	1.86	-184.17	186.97		
	0.940	1.86	1.86	-184.17	186.97		

02-04-2014, 04:23:13 PM

Page 3

	4.415 5.590 8.330 8.830	1.86 0 1.86 0 1.86 0	.00 .00 .00	-184.17 -184.17 -184.17 -184.17	0.0 0.0 0.0 0.0	0 0 0	
4	$\begin{array}{c} 0.000\\ 0.500\\ 0.940\\ 1.940\\ 3.131\\ 4.131\\ 5.635\\ 7.835\\ 9.063\\ 10.036\\ 10.717\\ 15.170\\ 15.670\end{array}$	$\begin{array}{c} 1.86 & 1 \\ 1.86 & 1 \\ 0.93 & 1 \\ 0.93 & 1 \\ 0.00 & 1 \\ 0.00 & 1 \\ 0.00 & 1 \\ 1.06 & 1 \\ 1.80 & 1 \\ 1.80 & 1 \end{array}$.86 .86 .86 .86 .86 .86 .86 .86 .86 .86	$\begin{array}{c} -184.17\\ -184.17\\ -84.17\\ -93.52\\ -93.52\\ 0.00\\ 0.00\\ 0.00\\ -105.60\\ -177.40\\ -177.40\\ -177.40\end{array}$	186.9 186.9 186.9 186.9 186.9 186.9 186.9 186.9 186.9 186.9 186.9 186.9	7 7 7 7 7 7 7 7 7 7	
5	0.000 0.500 5.271 7.315 9.360 12.554 14.130 14.630	1.80 1 1.80 1 1.80 1 1.80 1 1.80 1 2.40 1	.24 .24 .24 .24 .24 .24 .24 .24 .24	-177.40 -177.40 -177.40 -177.40 -177.40 -177.40 -234.15 -234.15	125.2 125.2 125.2 125.2 125.2 125.2 125.2 125.2 125.2	1 1 1 1 1	
6	0.000 0.500 2.068 6.565 9.165 11.765 11.831 13.821 15.829 17.829 17.830 18.330	$\begin{array}{c} 2.40 & 1 \\ 2.40 & 1 \\ 1.80 & 1 \\ 1.80 & 1 \\ 1.80 & 1 \\ 1.80 & 1 \\ 1.80 & 1 \\ 2.99 & 1 \\ 5.11 & 1 \\ 6.00 & 1 \\ 6.00 & 1 \end{array}$.86 .86 .86 .86 .86 .86 .86 .86 .86 .86	$\begin{array}{c} -234.15\\ -234.15\\ -234.15\\ -177.40\\ -177.40\\ -177.40\\ -177.40\\ -177.40\\ -288.93\\ -475.31\\ -549.63\\ -549.63\\ -549.63\\ -549.63\end{array}$	187.4 187.4 187.4 187.4 187.4 187.4 187.4 187.4 187.4 187.4 187.4 187.4 187.4	0 0 0 0 0 0 0 0 0 0 0 0 0	
7	$\begin{array}{c} 0.000\\ 0.500\\ 0.995\\ 4.081\\ 4.507\\ 7.593\\ 8.149\\ 2.540\\ 16.152\\ 2.540\\ 16.152\\ 22.696\\ 22.910\\ 23.910\\ 23.910\\ 24.580\\ 25.080 \end{array}$	$\begin{array}{c} 6.00 & 3\\ 6.00 & 3\\ 3.00 & 3\\ 2.94 & 3\\ 0.00 & 5\\ 0.00 & 5\\ 0.00 & 5\\ 0.00 & 5\\ 0.00 & 5\\ 0.00 & 5\\ 0.93 & 5\\ 1.24 & 5\\ 1.24 & 5\\ \end{array}$.00 .00 .00 .00 .00 .00 .00 .00 .00 .40 .4	$\begin{array}{c} -549.63\\ -549.63\\ -549.63\\ -289.70\\ -289.70\\ -289.70\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ -93.52\\ -93.52\\ -124.05\\ -124.05\\ -124.05\end{array}$	299.8 299.8 299.8 299.8 299.8 497.0 532.8 532.8 532.8 532.8 532.8 532.8 532.8 532.8 532.8 532.8 532.8 532.8	4 4 4 4 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
8	0.000 0.500 1.391 1.522 1.710 2.391 2.398 3.420	1.24 0 1.24 0 1.20 0 1.14 0 0.93 0 0.93 0 0.93 0	.00 .00 .00 .00 .00 .00 .00 .00	-124.05 -124.05 -124.05 -120.06 -114.33 -93.52 -93.52 -93.52	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0 0 0 0 0	
				ent Require ======= ft), PhiVc,		, Av/s (:	in^2/in)
Span 	d	PhiVc	Start	End	Vu	Xu	Av/s
1	22.69	51.66 51.66	0.000		0.00	0.000	0.0000
2	22.69	77.00	0.750 4.719 7.047 9.376 11.704 14.033 16.361	14.033 16.361	47.21 31.04 14.87 18.41 34.59 50.76 66.93	2.391 4.719 7.047 11.704 14.033 16.361 18.689	0.0200 0.0200 0.0000 0.0000 0.0200 0.0200 0.0200 0.0200

3 22.69 51.66 0.750 8.080 39.53 2.391 0.0200

spBeam v3.60 © StructurePoint Licensed to: Penn State University Park, License ID: 59919-1033950-4-22545-2CF68 E:\SPRING\Gravity\Girder Design\Column Line 13\Column Line 13 Girder.slb

0.750 4.562 6.744 8.926 4.562 6.744 8.926 11.108 36.57 21.41 13.15 28.31 4 22.56 51.37 2.380 0.0200 0.0000 4.562 8.926 11.108 0.0200 11.108 14.920 43.47 13.290 0.0200 37.18 20.04 23.45 40.59 4.848 7.315 9.782 13.880 0.750 2.380 5 22.56 51.37 0.0200 0.0000 0.0000 0.0200 4.848 4.848 9.782 7.315 9.782 12.250 59.95 35.29 25.41 48.34 6 22.56 51.37 0.750 4.642 2.380 0.0200 2.380 4.642 9.165 11.427 13.688 15.950 0.0200 0.0200 0.0000 0.0200 4.642 6.903 9.165 6.903 9.165 11.427 13.688 17.580 11.427 13.688 71.21 93.92 0.0200 7 22.56 51.37 0.750 5.283 120.81 2.380 0.0684 8.186 11.089 13.991 16.894 19.797 91.78 62.76 33.74 27.41 56.43 5.283 8.186 5.283 8.186 0.0398 11.089 16.894 19.797 11.089 13.991 16.894 0.0200 0.0200 0.0200 19.797 24.330 85.45 22.700 0.0336 8 22.69 51.66 0.750 3.420 10.29 2.391 0.0000

Longitudinal Beam Shear Reinforcement Details

Units: spacing & distance (in). Span Size Stirrups (2 legs each unless otherwise noted)

#5 --- None 1

2 3

4

5

#5 --- None ---#3 8 0 10.1 + <-- 55.9 --> + 10 0 10.9 #3 9 0 11.0 #3 5 0 10.2 + <-- 52.4 --> + 8 0 9.6 #3 5 0 10.9 + <-- 59.2 --> + 5 0 10.9 #3 8 0 9.8 + <-- 27.1 --> + 5 0 10.9 + 7 0 7.2 [3L] #3 12 0 4.7 [3L] + 5 0 7.0 [3L] + 13 0 10.7 + 9 0 6.4 #5 --- None ---6

8

Beam Shear Capacity

	d	n), Start PhiVc	Start	End	hiVc, PhiV Av/s	Sp	PhiVn	Vu	Xu
	22.69							0.00	0.000
2	22.69	51.66		7.047	0.0218	10.1	73.95 25.83 72.27	47.21 47.21 18.41 66.93 66.93	2.391 2.391 11.704 18.689 18.689
3	22.69	51.66	0.000 0.750 8.080	0.750 8.080 8.830	0.0200	11.0	72.08 72.08 72.08	39.53 39.53 18.02	2.391 2.391 6.439
4	22.56	51.37	0.000 0.750 4.562 8.926 14.920	8.926 14.920	0.0216	10.2	73.34 73.34 25.69 74.66 74.66	36.57 36.57 21.41 43.47 43.47	2.380 2.380 4.562 13.290 13.290
5	22.56	51.37		9.782	0.0201	10.9 10.9	71.81 71.81 25.69 71.81 71.81		2.380 2.380 9.782 12.250 12.250
6	22.56	51.37		9.165 13.688			74.06 74.06 25.69 71.95 98.00 98.00	59.95 59.95 25.41 71.21 93.92 93.92	2.380 2.380 9.165 13.688 15.950 15.950
7	22.56	51.37	0.000 0.750 5.283 8.186 19.797 24.330	19.797		4.7 7.0 10.7 6.4		120.81 120.81 91.78 62.76 85.45 85.45	2.380 2.380 5.283 8.186 22.700 22.700
8	22.69	51.66	0.000	3.420			25.83	10.29	2.391

02-04-2014, 04:23:13 PM

spBeam v3.60 © StructurePoint Licensed to: Penn State University Park, License ID: 59919-1033950-4-22545-2CF68 E:\SPRING\Gravity\Girder Design\Column Line 13\Column Line 13 Girder.slb

02-04-2014, 04:23:13 PM Page 5

		Et), PhiVc, Vu(ki Vratio		Vu	х	u			
1 2 3 4 5 6 7	Not checked Not checked Not checked Not checked Not checked Not checked Not checked					-			
lectio	==								
	n properties								
	Ig, Icr, Ie (in Ie,avg	^4), Mcr, Mmax (k	-ft)			De	Load	Level Dead+	Live
Span	Dead Dead	d+Live Zone	Ig	Icr	Mcr	Manager			
1 2	29412 37649	29412 Right 29412 Right 18083 Left Midspan Right 27346 Left Midspan Right 34295 Left Midspan Right 32138 Left Midspan Right 33357 Left Midspan Right 18025 Left Midspan Right 18025 Left Midspan Right 29412 Left Of Left Content of the second sec	29412 29412 43290	2931 2931 8671	94.91 94.91 117.53	-6.96 -21.64 113.53	29412 29412 43290	-11.40 -35.41 185.74	29412 29412 1744
3	29165	Right 27346 Left Midspan Right	29412 29412 30531 29412	6861 6861 30531 5381	94.91 94.91 97.04 94.91	-114.92 -107.11 0.00 -27.07	19562 22548 30531 29412	-188.40 -175.65 0.00 -42.79	974 1041 3053 2941
4	35697	34295 Left Midspan Right	29412 38391 29412	5381 5849 5171	94.91 110.39 94.91	-31.38 51.31 -65.01	29412 38391 29412	-49.72 82.47 -111.64	2941 3839 2006
5	34956	32138 Left Midspan Right 33357 Left	29412 37331 29412 29412	5171 4029 6596 6596	94.91 108.73 94.91 94.91	-62.78 12.87 -84.35 -87.86	29412 37331 29412 29412	-108.53 28.04 -117.37 -121.01	2138 3733 1865 1760
7	19644	Midspan Right 18025 Left Midapan	40920 29412 29412	5943 13670 13670	114.17 94.91 94.91	82.86 -324.48 -337.77	40920 14064 14020	105.59 -447.09 -466.31	4092 1382 1380
8	29412	Right 29412 Left	29412 29412	3784 3784	94.91 94.91	-69.01 -33.73	29412 29412	-96.49 -47.01	2817 2941
Maximu	m Instantaneous 1	Jeilections							
	D (in) Ddead Dlive								
2 3 4 5 6	$\begin{array}{cccc} -0.017 & -0.029 \\ 0.052 & 0.092 \\ -0.007 & -0.007 \\ 0.013 & 0.009 \\ -0.002 & 0.003 \\ -0.012 & -0.007 \\ 0.264 & 0.132 \\ -0.112 & -0.055 \end{array}$	0.145 -0.013 0.022 0.002 -0.019							
	m Long-term Defle								
Time d	ependant factor : D (in)	for sustained loa	.ds = 2.000)					
Span	Dsust Lambda	Dcs Dcs+lu							
2 3 4 5	0.052 2.000 -0.007 2.000 0.013 2.000 -0.000 2.000 -0.012 2.000	$\begin{array}{cccc} -0.033 & -0.062 \\ 0.104 & 0.197 \\ -0.013 & -0.020 \\ 0.026 & 0.035 \\ -0.000 & 0.002 \\ -0.024 & -0.031 \\ 0.528 & 0.660 \end{array}$	0.197 -0.020 0.035 0.002 -0.031	0.249 -0.026 0.048 0.002 -0.043					

Reinforcement in the Direction of Analysis

Top Bars:	615.9 lb	<=>	5.64	lb/ft	<=>	0.263	lb/ft^2
Bottom Bars:	877.8 lb	<=>	8.04	lb/ft	<=>	0.375	lb/ft^2
Stirrups:	322.3 lb	<=>	2.95	lb/ft	<=>	0.138	lb/ft^2
Total Steel:	1816.0 lb	<=>	16.64	lb/ft	<=>	0.776	lb/ft^2
Concrete:	1241.4 ft^	3 <=>	11.38	ft^3/ft	<=>	0.530	ft^3/ft^2

Appendix A.5: Assumed Column Loads From Above

Column Line 2 Loading From Above to Apply to Cantilevered Beam

	COLUMN LOADING FROM ABOVE																	
Frai	ne 2					i.												
_			Live Load			Dead Load							Exterior Wall Load					
	Location	Live Load (psf)	Live Load (ksf)	Area (sf)	Point LL (kip)	Misc Dead Load (psf)	Misc Dead Load (ksf)	Area (sf)	Misc Point DL (kip)	Pan Joist Pt DL (kip)	Girder Pt DL (kip)	Column Pt DL (kip)	Dead Load (psf)	Dead Load (ksf)	Height (ft)	Width (ft)	Point DL (kip)	
	1D	35	0.035	335.6	11.8	31.0	0.031	335.6	10.5	14.0	4.6	0.0	28	0.028	9.5	14.8	4.0	
Roof	1F	35	0.035	490.4	17.2	31.0	0.031	490.4	15.3	20.5	7.3	0.0	28	0.028	9.5	6.2	1.7	
æ	1L	35	0.035	524	18.4	31.0	0.031	524.0	16.3	21.9	8.0	0.0	14 14	0.014 0.014	9.5 9.5	17.7 25.8	2.4 3.5	
33	1D 1F	80 80	0.080 0.080	286.7 348.3	23.0 27.9	21.0 21.0	0.021 0.021	286.7 348.3	6.1 7.4	12.0 14.6	4.5 6.2	2.8 2.8	28 28	0.028 0.028	16.3 16.3	14.5 6.3	6.6 2.9	
Level 3	1L	80	0.080	346	27.7	21.0	0.021	346.0	7.3	14.5	6.8	2.8	14 14	0.014 0.014	16.3 16.3	13.8 22.0	3.2 5.1	
Level 2	1D 1F 1L	80 80 80	0.080 0.080 0.080	271.1 348.8 344.8	21.7 28.0 27.6	21.0 21.0 21.0	0.021 0.021 0.021	271.1 348.8 344.8	5.7 7.4 7.3	11.4 14.6 14.4	4.2 6.2 6.8	2.8 2.8 2.8	28 28 14 14	0.028 0.028 0.014 0.014	13.3 13.3 13.3 13.3	13.8 6.0 14.0 22.0	5.2 2.3 2.7 4.2	
Level 1	2D 2F 2L	- - -			- - -			- - -	- - -	- - -	- - -	- - -	28 28 14 14	0.028 0.028 0.014 0.014	13.3 13.3 13.3 13.3	13.0 6.3 14.0 21.8	4.9 2.4 2.7 4.1	

Point Load to Apply to Cantilevered Beam												
	Point LL	Point DL	Point Snow									
	(kip)	(kip)	(kip)									
2D	44.7	99.3	11.8									
2F	55.9	125.4	17.2									
2L	55.3	125.8	18.4									

Peggy Ryan Williams Center Page 71

Column Line 8 Loading From Above

Frame 8		COLUMN LOADING FROM ABOVE															
Frame 8	•		Live Load			I.			Dead Load				I	Ext	erior Wall Lo	ad	
	Location	Live Load (psf)	Live Load (ksf)	Area (sf)	Point LL (kip)	Misc Dead Load (psf)	Misc Dead Load (ksf)	Area (sf)	Misc Point DL (kip)	Pan Joist Pt DL (kip)	Girder Pt DL (kip)	Column Pt DL (kip)	Dead Load (psf)	Dead Load (ksf)	Height (ft)	Width (ft)	Point DL (kip)
Roof	8D 8G 8M	35 35 35	0.035 0.035 0.035	436.1 611.7 657.5	15.3 21.5 23.1	31.0 31.0 31.0	0.031 0.031 0.031	436.1 611.7 657.5	13.6 19.0 20.4	18.2 25.6 27.5	13.6 18.0 17.1	0.0 0.0 0.0	14 0 14	0.014 0 0.014	9.5 9.5 9.5	24.2 0.0 29.8	3.3 0.0 4.0
Level 3	8D 8G 8M 8P	80 80 91 35	0.080 0.080 0.091 0.035	284.3 611.7 417.8 261.2 323.5	22.8 49.0 33.5 23.8 11.4	21.0 21.0 21.0 99.0 99.0	0.021 0.021 0.021 0.099 0.099	284.3 611.7 417.8 261.2 323.5	6.0 12.9 8.8 25.9 32.1	11.9 25.6 17.5 10.9 13.5	9.2 18.0 10.8 7.5 8.7	2.8 2.8 2.8 2.8 2.8	14 0 14 14	0.014 0 0.014 0.014	16.3 16.3 8.1 16.3	23.8 0.0 29.8 28.8	5.5 0.0 3.4 6.6
Level 2	8D 8G 8M 8P	80 80 80 80	0.080 0.080 0.080 0.080	284.3 611.7 679.1 276.2	22.8 49.0 54.4 22.1	21.0 21.0 21.0 21.0	0.021 0.021 0.021 0.021	284.3 611.7 679.1 276.2	6.0 12.9 14.3 5.9	11.9 25.6 28.4 11.6	9.2 18.2 18.2 7.5	2.8 2.8 2.8 2.8	14 0 0 14	0.014 0 0 0.014	13.3 13.3 13.3 13.3	23.8 0.0 0.0 28.8	4.5 0.0 0.0 5.4
Level 1	8Z 8D 8G 8M 8P	- - - -	- - - -	- - - -	- - - -		- - - -	- - - -	- - - -	- - - -	- - - -	- - - -	14 0 0 0 14	0.014 0 0 0 0.014	13.3 13.3 13.3 13.3 13.3 13.3	20.7 0.0 0.0 0.0 28.8	3.9 0.0 0.0 0.0 5.4

Column Line 13 Loading From Above

COLUMN LOADING FROM ABOVE																	
Frame 13																	
			Live Load						Dead Load				Exterior Wall Load				
	Location	Live Load (psf)	Live Load (ksf)	Area (sf)	Point LL (kip)	Misc Dead Load (psf)	Misc Dead Load (ksf)	Area (sf)	Misc Point DL (kip)	Pan Joist Pt DL (kip)	Girder Pt DL (kip)	Column Pt DL (kip)	Dead Load (psf)	Dead Load (ksf)	Height (ft)	Width (ft)	Point DL (kip)
	13C	35	0.035	288.5	10.1	31.0	0.031	288.5	9.0	12.1	12.6	0.0	28	0.028	9.5	34.8	9.3
	13E	35	0.035	207.6	7.3	31.0	0.031	207.6	6.5	8.7	9.3	0.0	28	0.028	9.5	15.0	4.0
Roof	13H	35	0.035	163.1	5.8	31.0	0.031	163.1	5.1	6.9	7.6	0.0	28	0.028	9.5	12.3	3.3
R	13K	35	0.035	194.1	6.8	31.0	0.031	194.1	6.1	8.1	9.2	0.0	28	0.028	9.5	15.0	4.0
	13N	35	0.035	208.5	7.3	31.0	0.031	208.5	6.5	8.7	10.3	0.0	28	0.028	9.5	16.7	4.5
													14	0.014	9.5	12.3	1.7
	13C	80	0.080	146.7	11.8	21.0	0.021	146.7	3.1	6.2	7.9	2.8	28	0.028	16.3	25.0	11.4
	13E	80	0.080	153.2	12.3	21.0	0.021	153.2	3.3	6.4	9.3	2.8	28	0.028	16.3	15.0	6.9
Level 3	13H	80	0.080	124.1	10.0	21.0	0.021	124.1	2.7	5.2	7.6	2.8	28	0.028	16.3	12.3	5.6
Lev	13K	80	0.080	151.5	12.2	21.0	0.021	151.5	3.2	6.4	9.2	2.8	28	0.028	16.3	15.0	6.9
	13N	80	0.080	152.9	12.3	21.0	0.021	152.9	3.3	6.4	9.3	2.8	28	0.028	16.3	15.0	6.9
													14	0.014	16.3	10.0	2.3
	13C	80	0.080	148.5	11.9	21.0	0.021	148.5	3.2	6.2	8.3	2.8	28	0.028	13.3	25.0	9.4
	13E	80	0.080	167.9	13.5	21.0	0.021	167.9	3.6	7.1	9.3	2.8	28	0.028	13.3	15.0	5.6
12	13H	80	0.080	170.9	13.7	21.0	0.021	170.9	3.6	7.2	7.6	2.8	28	0.028	13.3	20.3	7.6
Level 2	13K	80	0.080	202.1	16.2	21.0	0.021	202.1	4.3	8.5	9.2	2.8	28	0.028	13.3	22.8	8.5
-	13N	80	0.080	156.3	12.6	21.0	0.021	156.3	3.3	6.6	8.6	2.8	28	0.028	13.3	14.0	5.3
	1514	00	0.000	150.5	12.0	21.0	0.021	150.5	5.5	0.0	0.0	2.0	14	0.014	13.3	11.3	2.1
														0.014	10.0	11.5	2.12
	13A.2	-	-	-	-	-	-	-	-	-	-	-	28	0.028	6.7	22.8	4.3
	13B	-	-	-	-	-	-	-	-	-	-	-	0	0	6.7	0.0	0.0
1	13C	-	-	-	-	-	-	-	-	-	-	-	0	0	6.7	0.0	0.0
Level 1	13E	-	-	-	-	-	-	-	-	-	-	-	0	0	6.7	0.0	0.0
2	13H	-	-	-	-	-	-	-	-	-	-	-	0	0	6.7	0.0	0.0
	13K	-	-	-	-	-	-	-	-	-	-	-	0	0	6.7	0.0	0.0
	13N	-	-	-	-	-	-	-	-	-	-	-	0	0	6.7	0.0	0.0

COLUMN LOADING FROM ABOVE

02-05-2014, 03:04:26 PM

Appendix A.6: spBeam Output

Column Line D Beam spBeam v3.60 © StructurePoint Licensed to: Penn State University Park, License ID: 59919-1033950-4-22545-2CF68 E:\SPRING\Gravity\Beam Design\Beam along Column line D - updated.slb

Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	icensed to: Per \SPRING\Gravit							5-2CF68			,	Pag
Default v3.60 (MS A computer Forgen for Analysis, Design, and Investigation of Asinforced Concrete Feams and One-way Silab Systems Copyright 1352-2017. Lic Licenses stated above actinoledges that STRUCTMEFOINT (BT) is not and cannot be responsible for either the accuracy of adequacy of the orthonic oppenmental upper led (at input prepared by the oppenmentation of the orthonic oppenmentation of the oppenmentation oppenmentation of the oppenmentation oppenmentation oppenmentati			0 0 00 0 00 00000 00 00 00 00 00			00 00 00 00 00000 00 0 00000			00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00			
be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spheam computer program. Furthermore, STMCTURENDINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the mission and and how be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTURENDINT disclaims all responsibility in contract, negligence or other for any analysis, design or engineering documents prepared in connection with the use of the spheam program. P Reinforcement 		i	A Computer Reinfo Coj	Program fo rced Concr byright © P	spBeam r Analysi ete Beams 1992-2013 ll rights	v3.60 (Th s, Design and One- , STRUCTU reserved	1) n, and In [.] -way Slab JREPOINT, 1	vestigati Systems LLC	on of			
Present Units: Width (ft), Mmax (k-ft), Xmax (ft), As (in^2), Sp (in) Span Zone Midth Mmax Xmax AsPrime AsMin AsMax AsPrime AsMin AsMax AsPrime 1 Left 2.67 434.11 2.188 0.000 2.400 13.005 4.540 2.024 19-48 1 Left 2.67 432.71 4.063 0.000 2.400 13.005 9.025 2.024 19-48 2 Left 3.33 1178.08 0.500 0.772 2.400 13.005 5.777 2.024 19-48 2L 2 Left 3.33 180.000 21.463 0.000 2.400 13.005 1.818 10.760 15-48 3 3 Left 3.45 0.02 0.588 0.000 1.307 7.288 0.001 10.760 15-48 3 *5 NOTES: *3 - 5 Nome Assauge over end by minimum reinforcement. *5 Number of bars governed by maximum allowable spacing. PBar Details Units: Length (ft) Ears Length Ears Length Ears Length Ears Length	be resp for pro any wa: by the program analys: STRUCTU analys:	ponsible for ocessing by rranty expr spBeam prog m is not an is, design UREPOINT d is, design	or either y the spB essed nor gram. Alth nd cannot n and isclaims al	the accu eam compu- implied wi ough STRUC be certi engineer l respons	racy or ter prog th respe TUREPOINT fied inf ing doc ibility i	adequad ram. Fui ct to t has end allible. uments n contra	thermore the corre- deavored The fin is act, negl	he mater , STRUCT ctness c to produc al and the li igence c	ial sup UREPOIN f the e spBes only r censee's r other	oplied I neithe output am error esponsibi s. Acco tort fo	as input er makes prepared free the ility for ordingly, or any	
<pre>Units: Width (ft), Mmax (k-ft), Xmax (ft), As (in^2), Sp (in) Span Zone Width Mmax Xmax AsPrime AsMin AsMax AsReq SpProv Bars 1 Left 2.67 434.11 2.188 0.000 2.400 13.005 4.250 2.024 19-48 Midspan 2.67 1261.99 6.250 2.295 2.344 12.701 14.996 2.024 19-48 2L 2 Left 3.33 1178.08 0.500 0.772 2.400 13.005 5.222 4.887 8-48 Right 3.33 147.808 0.000 2.400 13.005 5.222 4.887 8-48 Right 3.33 180.00 21.463 0.000 2.400 13.005 5.222 4.887 8-48 Right 3.33 180.00 21.453 0.000 2.400 13.005 1.818 10.760 15-48 *3 *5 Right 13.45 0.02 0.588 0.000 1.307 7.288 0.001 10.760 15-48 *3 *5 Right 13.45 0.01 0.662 0.000 1.307 7.288 0.001 10.760 15-48 *3 *5 NOTES:</pre>												
Units: Width (ft), Mmax (k-ft), Mmax (ft), As (in^2), Sp (in) Span Zone Width Mmax Xmax AsPrime AsMin AsMax AsReq SpProv Bars 1 Left 2.67 434.11 2.188 0.000 2.400 13.005 4.540 2.024 19-48 Midspan 2.67 812.71 4.063 0.000 2.400 13.005 9.025 2.024 19-48 2L 2 Left 3.33 117.08 0.500 0.772 2.400 13.005 13.777 2.012 19-48 2L Midspan 3.33 547.39 11.788 0.000 2.400 13.005 1.3.777 2.012 19-48 2L Midspan 3.33 147.08 0.500 0.772 2.400 13.005 1.3.777 2.012 19-48 2L Midspan 3.33 180.00 21.463 0.000 2.400 13.005 1.0.777 2.012 19-48 3 3 Left 13.45 0.03 0.500 0.000 1.307 7.288 0.003 10.760 15-48 *3 *5 Night 3.45 0.02 0.588 0.000 1.307 7.288 0.001 10.760 15-48 *3 *5 NOTES: *3 - Design governed by minimum reinforcement. *5 - Number of bars governed by maximum allowable spacing. Darbetails Units: Length (ft) Span Bars Length Bars Length Bars Length Bars Length Bars Length Bars Length 1 19-48 6.75 2 6-48 13.20 5-48 6.12 8-48 33.25 7-48 2.52 3 15-48 0.75 15-48 0.75 15-48 0.75 15-48 0.75 15-48 13.13 2.295 3.797 8-45 *3 2 2.67 46.58 32.750 0.000 1.026 30.390 0.772 8.859 4-45 *3 3 13.45 0.00 0.625 0.000 1.026 30.390 0.772 8.859 4-45 *3 3 13.45 0.00 0.625 0.000 1.026 30.390 0.772 8.859 4-45 *3 3 13.45 0.00 0.625 0.000 1.026 30.390 0.772 8.859 4-45 *3 3 13.45 0.00 0.625 0.000 1.026 30.390 0.772 8.859 4-45 *3 3 13.45 0.00 0.625 0.000 0.000 7.835 0.000 0.000 NOTES: *3 - Design governed by minimum reinforcement. *3 - Design governed by minimum reinforcement.												
1 Left 2.67 434.11 2.188 0.000 2.400 13.005 4.540 2.024 19-#8 Nidspan 2.67 126.1.98 6.250 2.295 2.344 12.701 14.996 2.024 19-#8 2 Left 3.33 178.08 0.500 0.772 2.400 13.005 13.777 2.012 19-#8 2L 1 Midspan 3.33 178.08 0.500 0.772 2.400 13.005 13.777 2.012 19-#8 2L 1 Midspan 3.33 180.000 2.400 13.005 18.81 10.760 15-#8 *3 3 Left 13.45 0.03 0.500 0.001 1.307 7.288 0.001 10.760 15-#8 *3 *5 NOTES: *3 - 0.00 0.660 1.307 7.288 0.001 10.760 15-#8 *5 NOTES: *3 - - - 10 6.75 <t< td=""><td>Units: Width</td><td>(ft), Mmax</td><td></td><td></td><td></td><td></td><td>AsMax</td><td>AsReq</td><td>SpProv</td><td>Bars</td><td></td><td></td></t<>	Units: Width	(ft), Mmax					AsMax	AsReq	SpProv	Bars		
Midspan 3.33 547.39 11.788 0.000 2.400 13.005 5.822 4.887 8-#8 Right 3.33 180.00 21.463 0.000 2.400 13.005 1.818 10.760 15-#8 *3 3 Left 13.45 0.03 0.500 0.000 1.307 7.288 0.001 10.760 15-#8 *3 *5 Right 13.45 0.01 0.662 0.000 1.307 7.288 0.001 10.760 15-#8 *3 *5 NOTES: *3 - Design governed by minimum reinforcement. *5 - Number of bars governed by maximum allowable spacing. Differ Length (ft) Mitspan 13.20 5-#8 6.12 8-#8 33.25 7-#8 2.52 3 15-#8 0.75 Units: Width (ft), Mmax (k-ft), Xmax (ft), As (in^2), Sp (in) Span Width Mmax Xmax AsPrime AsMin AsMax AsReg SpProv Bars 1 2.67 0.00 3.125 0.000 1.026 30.390 0.772 8.859 4-#5 *3 2 2.67 46.58 32.750 0.000 1.026 30.390 0.772 8.859 4-#5 *3 3 13.45 0.00 0.625 0.000 0.000 7.835 0.000 0.000 NOTES: *3 - Design governed by minimum reinforcement. *5 - Subter State St							13.005 13.005	4.540 9.025	2.024 2.024	19-#8 19-#8	2L	
Midspan 13.45 0.02 0.588 0.000 1.307 7.288 0.001 10.760 15-#8 *3 *5 NOTES: *3 - Design governed by minimum reinforcement. *5 - Number of bars governed by maximum allowable spacing. Design governed by maximum allowable spacing. Design governed by maximum allowable spacing. Design for the second by maximum allowable spacing. 1 1 2 6-#8 13.20 5-#8 6.12 8-#6 33.25 0.115: Width fill, Mmax (k-ft), Xmax (ft), As (in^2), Sp (in) Span Midth Mmax Xmax AsPrime AsMin AsMax AsReq SpProv Bars 1 2.67 46.58 <t< td=""><td>2 Left Midspan Right</td><td>3.33 3.33 3.33</td><td>1178.08 547.39 180.00</td><td>11.788</td><td>0.000</td><td>2.400</td><td>13.005</td><td>5.822</td><td>4.887</td><td>8-#8</td><td></td><td></td></t<>	2 Left Midspan Right	3.33 3.33 3.33	1178.08 547.39 180.00	11.788	0.000	2.400	13.005	5.822	4.887	8-#8		
*5 - Number of bars governed by maximum allowable spacing. b Bar Details Units: Length (ft) Span Bars Length Bars Length Bars Length Bars Length Bars Length Bars Length 1 19-#8 6.75 2 6-#8 13.20 5-#8 6.12 8-#8 33.25 7-#8 2.52 3 15-#8 0.75 Units: Width (ft), Mmax (k-ft), Xmax (ft), As (in^2), Sp (in) Span Width Mmax Xmax AsPrime AsMin AsMax AsReq SpProv Bars 12 2.67 0.00 3.125 0.000 2.420 13.113 2.295 3.797 8-#5 *3 2 2.67 46.58 32.750 0.000 1.026 30.390 0.772 8.859 4-#5 *3 3 13.45 0.00 0.625 0.000 0.000 7.835 0.000 0.000 NOTES: *3 - Design governed by minimum reinforcement.	Midspan Right	13 45	0.02	0.588	0.000	1.307	7.288	0.001	10.760	15-#8	*3 *5	
Units: Length (ft) Span Length Bars Length Bars Length Continuous Right Bars Length Bars Length Bars Length Bars Length Bars Length Bars Length Continuous Right Bars Length Bars Length Bars Length Continuous Context Continuous Continuous Context Continuous Context Continuou						cing.						
Left Continuous Bars Right Bars 1 19-#8 6.75 2 6-#8 13.20 5-#8 6.12 8-#8 33.25 7-#8 2.52 3 15-#8 0.75 3 15-#8 0.75 3 15-#8 0.75 3 15-#8 0.75 3 15-#8 0.75 3 15-#8 0.75 3 15-#8 0.75 3 12.67 0.00 3.125 0.000 2.420 13.113 2.295 3.797 8-#5 *3 2 2.67 46.58 32.750 0.000 1.026 30.390 0.772 8.859 4-#5 *3												
1 19-#8 6.75 2 6-#8 13.20 5-#8 6.12 8-#8 33.25 7-#8 2.52 3 15-#8 0.75 3 15-#8 0.75 tom Reinforcement Units: Width (ft), Mmax (k-ft), Xmax (ft), As (in^2), Sp (in) Span Midth Mmax AsPrine AsMin AsReq SpProv Bars 1 2.67 0.00 3.125 0.000 2.420 13.113 2.295 3.797 8-#5 *3 2 2.67 46.58 32.750 0.000 1.026 30.390 0.772 8.859 4-#5 *3 3 13.45 0.00 0.625 0.000 0.000 *3 - Design governed by minimum reinforcement. :tom Bar Details	-	Left		Cor	tinuous_		Ri	ght				
2 6-#8 13.20 5-#8 6.12 8-#8 33.25 7-#8 2.52 3 15-#8 0.75 tom Reinforcement Units: Width (ft), Mmax (k-ft), Xmax (ft), As (in^2), Sp (in) Span Width Mmax Xmax AsPrime AsMin AsMax AsReq SpProv Bars 1 2.67 0.00 3.125 0.000 2.420 13.113 2.295 3.797 8-#5 *3 2 2.67 46.58 32.750 0.000 1.026 30.390 0.772 8.859 4-#5 *3 3 13.45 0.00 0.625 0.000 0.000 7.835 0.000 NOTES: *3 - Design governed by minimum reinforcement. tom Bar Details								Bars	Length			
3 15-#8 0.75 ton Reinforcement Units: Width (ft), Mmax (k-ft), Xmax (ft), As (in^2), Sp (in) AsMax AsReq SpFrov Bars 1 2.67 0.00 3.125 0.000 2.420 13.113 2.295 3.797 8-#5 *3 2 2.67 46.58 32.750 0.000 1.026 30.390 0.772 8.859 4-#5 *3 3 13.45 0.00 0.625 0.000 7.835 0.000 NOTES: *3 - Design governed by minimum reinforcement. tom Bar Details												
Units: Width (ft), Mmax (k-ft), Xmax (ft), As (in^2), Sp (in) Span Width Mmax Xmax AsPrime AsMin AsMax AsReq SpProv Bars 1 2.67 0.00 3.125 0.000 2.420 13.113 2.295 3.797 8-#5 *3 2 2.67 46.58 32.750 0.000 1.026 30.390 0.772 8.859 4-#5 *3 3 13.45 0.00 0.625 0.000 0.000 7.835 0.000 0.000 NOTES: *3 - Design governed by minimum reinforcement. tom Bar Details												
Units: Width (ft), Mmax (k-ft), Xmax (ft), As (in^2), Sp (in) Span Width Mmax Xmax AsPrime AsMin AsMax AsReq SpProv Bars 1 2.67 0.00 3.125 0.000 2.420 13.113 2.295 3.797 8-#5 *3 2 2.67 46.58 32.750 0.000 1.026 30.390 0.772 8.859 4-#5 *3 3 13.45 0.00 0.625 0.000 0.000 7.835 0.000 0.000 NOTES: *3 - Design governed by minimum reinforcement. :tom Bar Details				15-#	o 0.75		-					
Span Width Mmax Xmax AsPrime AsMin AsMax AsReq SpProv Bars 1 2.67 0.00 3.125 0.000 2.420 13.113 2.295 3.797 8-#5 *3 2 2.67 46.58 32.750 0.000 1.026 30.390 0.772 8.859 4-#5 *3 3 13.45 0.00 0.625 0.000 0.000 7.835 0.000 0.000 NOTES: *3 - Design governed by minimum reinforcement. ************************************			/h	15-1	- /1-00	On 12ml						
1 2.67 0.00 3.125 0.000 2.420 13.113 2.295 3.797 8-#5 *3 2 2.67 46.58 32.750 0.000 1.026 30.390 0.772 8.859 4-#5 *3 3 13.45 0.00 0.625 0.000 0.000 7.835 0.000 0.000 NOTES: *3 - Design governed by minimum reinforcement. ************************************	Span Width	h Mmax	k Xmax	AsPrime	AsMin	AsMax						
3 13.45 0.00 0.625 0.000 0.000 7.835 0.000 0.000 NOTES: *3 - Design governed by minimum reinforcement. :tom Bar Details 										*3		
NOTES: *3 - Design governed by minimum reinforcement. 	2 2.6	7 46.5	3 32.750	0.000	1.026	30.390	0.772	8.859	4-#5	*3		
	NOTES:					7.835	0.000	0.000				
Long BarsShort Bars Span Bars Start Length Bars Start Length	Units: Start	=== (ft), Leng		_Short Bar	·s							

02-05-2014, 03:04:26 PM

Page 2

spBeam v3.60 © StructurePoint Licensed to: Penn State University Park, License ID: 59919-1033950-4-22545-2CF68 E:\SPRING\Gravity\Beam Design\Beam along Column line D - updated.slb

			-	-
1	8-#5	0.00	6.75	
2	4-#5	0.00	33.25	
3				
Flexural	Canacity			

г	+	e	A	u	+	a	+		C	a	Ρ	a	<u> </u>	+	L	Υ
=	=	=	=	=	=	=	=	=	=	_	=	=	=	=	=	=

Units: Span				hiMn (k-ft) PhiMn-	PhiMn+
1	2.188 3.375 4.063 6.250	15.01 15.01 15.01 15.01 15.01 15.01 15.01	2.48 2.48 2.48	-1265.93 -1265.93 -1265.93 -1265.93 -1265.93 -1265.93 -1265.93	279.75 279.75 279.75 279.75 279.75 279.75 279.75
2	$\begin{array}{c} 0.000\\ 0.500\\ 0.747\\ 6.125\\ 7.827\\ 11.788\\ 13.205\\ 16.625\\ 21.463\\ 30.735\\ 31.735\\ 32.750\\ 33.250\\ \end{array}$	15.01 15.01 11.06 11.06 7.57 6.32 6.32 6.32 6.32 11.85 11.85	1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24	$\begin{array}{c} -1207.53\\ -1207.53\\ -207.53\\ -988.91\\ -988.91\\ -704.41\\ -595.65\\ -595.65\\ -595.65\\ -595.65\\ -595.65\\ -1048.74\\ -1048.74\\ -1048.74\end{array}$	$\begin{array}{c} 167.88\\ 167.88\\ 167.88\\ 159.11\\ 159.11\\ 157.11\\ 156.03\\ 156.03\\ 156.03\\ 156.03\\ 159.44\\ 159.44\\ 159.44\\ \end{array}$
3	0.500 0.588 0.662	11.85 11.85 11.85 11.85 11.85 11.85 11.85	0.00 0.00 0.00 0.00 0.00	-70.23 -70.23 -70.23 -70.23 -70.23 -70.23 -70.23	0.00 0.00 0.00 0.00 0.00 0.00

Longitudinal Beam Shear Reinforcement Required

Units: Span	d (in), d	Start, Er PhiVc	d, Xu (ft Start		Vu (kip) Vu	, Av/s (Xu	in^2/in) Av/s
1	21.97	66.71	0.000 2.209	2.209 6.000	200.35 204.13	2.209 4.419	0.1352 0.1390
2	21.97	66.71	0.750 6.415 10.499 14.583 18.667 22.751 26.835	6.415 10.499 14.583 18.667 22.751 26.835 32.500	62.39 55.41 48.44 41.46 34.49 27.51 20.54	2.331 6.415 10.499 14.583 18.667 22.751 26.835	0.0267 0.0267 0.0267 0.0267 0.0267 0.0267 0.0000 0.0000

3 --- No beam ---Longitudinal Beam Shear Reinforcement Details _____ _____

Units: spacing & distance (in). Span Size Stirrups (2 legs each unless otherwise noted) 1 #3 8 0 3.1 [4L] + 15 0 3.1 [4L] 2 #3 34 0 7.9 + <-- 117.0 --> 3 --- No beam ---

Beam Shear Capacity

Units: d, Sp (in), Start, End, Xu (ft), PhiVc, PhiVn, Vu (kip), Av/s (in^2/in)

Span	d	PhiVc	Start	End	Av/s	Sp	PhiVn	Vu	Xu
1	21.97	66.71	0.000	0.250			205.48	197.01	0.250
			0.250	2.209	0.1403	3.1	205.48	200.35	2.209
			2.209	6.000	0.1403	3.1	205.40	204.13	4.419
			6.000	6.750			205.40	204.13	4.419
2	21.97	66.71	0.000	0.750			94.31	62.39	2.331
			0.750	22.751	0.0279	7.9	94.31	62.39	2.331
			22.751	30.919			33.35	27.51	22.751
			30.919	32.500			33.35	13.56	30.919
			32.500	33.250			33.35	13.56	30.919
3 -	No bea	m							
Slab Shea	ar Capacit	У							
		-							
Units:	b, d (in), Xu (f	t), PhiVc	, Vu(kip)					

Units: b, d (in), Xu (ft), PhiVc, Vu(kip) Span b d Vratio PhiVc Vu Xu

	Not check										
	161.40				38.28	0.04	0.7	1			
lectior											
	n properties										
Units:	Ig, Icr, Ie Ie,av		4), Mcr,	Mmax (k	-ft)				Load	Level Dead+	Live
Span	Dead		Hive Zo	ne	Ig	Icr	Mcr	Mmax	Ie	Mmax	Ie
1 2	27765 53344			ft dspan	39216 39216 61682	27717 28498 4280	126.54 162.01	-782.35 -701.74 22.71	28561 61682	-1084.07 -962.45 39.71	27735 28523 61682
3	1226		1226 Le	ght ft	39216 1226		126.54 21.53	21.43 -0.21	39216 1226		39216 1226
Maximun	n Instantane	ous De	eflectio	ns							
Units: Span		live	Dtotal								
1	0.482 0	.224 .142 .008	0.707 -0.363 0.016								
	n Long-term										
	ependant fac D (in)			ined loa	ds = 2.000)					
	Dsust Lamb		Dcs	Dcs+lu	Dcs+l	Dtotal					
	0.482 1.7				1.048 -0.529 0.025	1.531 -0.749 0.034					
Units:	-0.220 1.7		0.018	0.025							
Units: Span 1 2 3 erial 7	-0.220 1.7		0.018	0.025							

 Surrups:
 253.2 LD
 <>>>
 6.21 LD/ft
 <>>>
 0.462 LD/ft^2

 Total Steel:
 1871.2 Lb
 <>>
 45.92 Lb/ft
 >>
 3.414 Lb/ft^2

 Concrete:
 383.3 ft^3 <=>
 9.41 ft^3/ft
 <>>
 0.699 ft^3/ft^2

Peggy Ryan Williams Center Page 75

Appendix A.7: Load to Apply to Level 1 Columns

Column Line 2 Column Loads

				Snow Load	0	0	0
			Moment @ Top (k-ft)	LL Case 2 Dead Load Snow Load	-5.43	7.91	-10.38
			Momen (k-	LL Case 2	-6.92	8.93	-14.3
		Girder 2		LL Case 1	-1.19	6.12	-8.35
		Gird		LL Case 2 Dead Load Snow Load	0	0	0
ns			Axial Load (kip)	Dead Load	36.28	66.99	60.36
Breakdown of Loads to Apply to Columns	Due to:		Axial Lo	LL Case 2	12.97	39.02	27.92
Loads to Apl	Due			LL Case 1	36.58	61.37	46.32
eakdown of			þ	Snow Load	4.64	4.64	4.64
Br			Moment @ Top (k-ft)	Live Load Dead Load Snow Load	29.9	29.9	29.9
		Beam D	W	Live Load	17.58	17.58	17.58
		Bea	(c	Snow Load	14.01	14.01	14.01
			Axial Load (kip)	Live Load Dead Load Snow I	152.1	152.1	152.1
			A.	Live Load	53.09	53.09	53.09
			Column		2D	2F	2L

*NOTE: The loads due the Beam D account for the column loadings from the upper floors.

*NOTE: Positive axial forces denote compression.

*NOTE: Positive moments denote that the left hand face of the upper column is in tension and the right hand face of the bottom column is in tension.

					Loads ti	Loads to Apply to Columns	olumns					
Column		Axial Lc	Axial Load (kip)		Σ	loment X-dir	Moment X-dirn @ Top (k-ft)	t)	2	Moment Y-dirn @ Top (k-ft)	n @ Top (k-ft	t)
	LL Case 1	LL Case 2	LL Case 1 LL Case 2 Dead Load Snow Load LL Case 1 LL Case 2 Dead Load Snow Load LL Case 1 LL Case 2 Dead Load Snow Load	Snow Load	LL Case 1	LL Case 2	Dead Load	Snow Load	LL Case 1	LL Case 2	Dead Load	Snow Load
2D	89.67	66.06	188.38	14.01	17.58	17.58	29.90	4.64	-1.19	-6.92	-5.43	0.00
2F	114.46	92.11	219.09	14.01	17.58	17.58	29.90	4.64	6.12	8.93	7.91	0.00
2L	99.41	81.01	212.46	14.01	17.58	17.58	29.90	4.64	-8.35	-14.30	-10.38	00.00

Angela Mincemoyer

Column Line 8 Column Loads

				Breakdo	wn of Loads	to Apply to	Columns				
						Due to:					
		Floors Above	5				Gird	er 8			
Column	A	xial Load (ki	p)		Axial Lo	ad (kip)			Moment @	ӯ Top (k-ft)	
	Live Load	Dead Load	Snow Load	LL Case 1	LL Case 2	Dead Load	Snow Load	LL Case 1	LL Case 2	Dead Load	Snow Load
8Z	0.00	3.90	0.00	38.36	37.10	84.93	14.72	16.15	16.98	35.40	6.87
8D	45.60	118.50	15.30	85.84	51.62	160.21	36.46	-6.58	-10.91	-18.89	-4.54
8G	98.00	181.40	21.50	77.12	34.67	68.22	-7.84	3.42	8.35	9.39	1.28
8M	87.90	223.10	46.90	82.29	50.49	117.37	1.38	-2.69	-6.69	-4.39	-0.31
8P	22.10	102.30	11.40	30.68	26.22	33.30	-0.33	-4.66	-5.09	-2.40	0.14

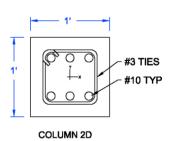
*NOTE: Positive axial forces denote compression.

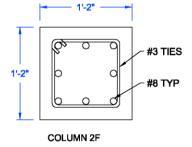
*NOTE: Positive moments denote that the left hand face of the upper column is in tension and the right hand face of the bottom column is in tension.

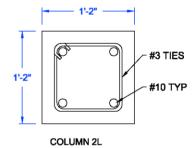
			Loads t	o Apply to Co	olumns			
Column		Axial Lo	ad (kip)			Moment @	ӯ Top (k-ft)	
	LL Case 1	LL Case 2	Dead Load	Snow Load	LL Case 1	LL Case 2	Dead Load	Snow Load
8Z	38.36	37.10	88.83	14.72	16.15	16.98	35.40	6.87
8D	131.44	97.22	278.71	51.76	-6.58	-10.91	-18.89	-4.54
8G	175.12	132.67	249.62	13.66	3.42	8.35	9.39	1.28
8M	170.19	138.39	340.47	48.28	-2.69	-6.69	-4.39	-0.31
8P	52.78	48.32	135.60	11.07	-4.66	-5.09	-2.40	0.14

Column Line 13 Column Loads

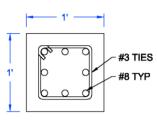
				Breakdo	wn of Loads	to Apply to	Columns				
						Due to:					
		Floors Above	e				Gird	er 13			
Column	A	xial Load (ki	p)		Axial Lo	oad (kip)			Moment @	စ္ Top (k-ft)	
	Live Load	Dead Load	Snow Load	LL Case 1	LL Case 2	Dead Load	Snow Load	LL Case 1	LL Case 2	Dead Load	Snow Load
13A.2	0.00	4.30	0.00	33.42	25.23	70.45	10.89	6.94	7.76	13.26	1.86
13B	0.00	0.00	0.00	60.11	36.91	128.26	24.47	-2.50	-4.91	-5.42	-0.28
13C	23.70	104.30	10.10	41.25	22.40	55.57	19.29	-0.80	-2.20	-0.66	-0.85
13E	25.80	85.60	7.30	34.87	14.83	46.92	2.51	0.10	1.72	0.69	0.27
13H	23.70	75.60	5.80	30.06	10.84	25.25	2.97	-0.64	-1.74	-1.65	-0.20
13K	28.40	89.20	6.80	43.35	29.51	56.44	5.18	1.89	2.60	3.05	0.30
13N	24.90	91.40	7.30	23.11	18.89	33.03	3.16	-4.04	-4.41	-5.74	-0.55

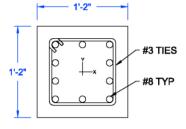

*NOTE: Positive axial forces denote compression.

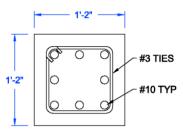

*NOTE: Positive moments denote that the left hand face of the upper column is in tension and the right hand face of the bottom column is in tension.

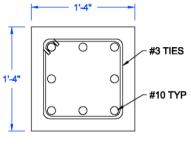

			Loads t	o Apply to C	olumns			
Column		Axial Lo	ad (kip)			Moment @	ӯ Top (k-ft)	
	LL Case 1	LL Case 2	Dead Load	Snow Load	LL Case 1	LL Case 2	Dead Load	Snow Load
13A.2	33.42	25.23	74.75	10.89	6.94	7.76	13.26	1.86
13B	60.11 36.91 12		128.26	24.47	-2.50	-4.91	-5.42	-0.28
13C	64.95	46.10	159.87	29.39	-0.80	-2.20	-0.66	-0.85
13E	60.67	40.63	132.52	9.81	0.10	1.72	0.69	0.27
13H	53.76	34.54	100.85	8.77	-0.64	-1.74	-1.65	-0.20
13K	71.75	57.91	145.64	11.98	1.89	2.60	3.05	0.30
13N	48.01	43.79	124.43	10.46	-4.04	-4.41	-5.74	-0.55

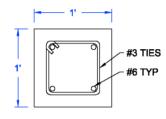
Appendix A.8: Column Designs


Column Line 2 Columns

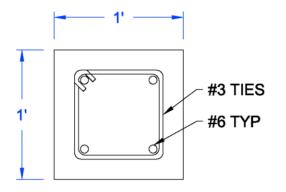



Column Line 8 Columns

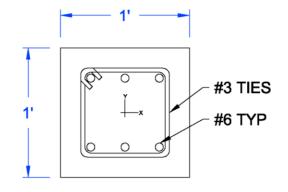

COLUMN 8Z


COLUMN 8D

COLUMN 8G



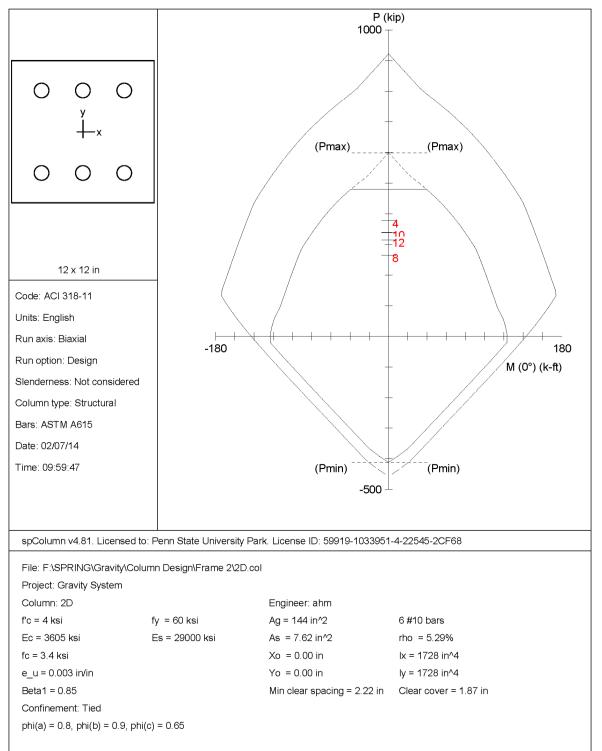
COLUMN 8M



COLUMN 8P

Column Line 13 Columns

COLUMN 13A.2 COLUMN 13B COLUMN 13E COLUMN 13H COLUMN 13K COLUMN 13N



COLUMN 13C

Appendix A.9: spColumn Output

Column Line 2 Columns

Column 2D

Page 1 02/07/14 09:57 AM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Gravity\Column Design\Frame 2\2D.col

				000	000			0								
				00	00			00								
00	000	0000	000	00		00	000	00	00	00	0 000	00000	000	0 000	000	
00	0	00	00	00		00	00	00	00	00	00	00	00	00	00	
00		00	00	00		00	00	00	00	00	00	00	00	00	00	
00	000	00	00	00		00	00	00	00	00	00	00	00	00	00	
	00	0000	000	00		00	00	00	00	00	00	00	00	00	00	
0	00	00		00	00	00	00	00 0	00	00	00	00	00	00	00	
00	000	00		000	000	00	000	000	00	0 000	00	00	00	00	00	(TM)

spColumn v4.81 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright © 1988-2012, STRUCTUREPOINT, LLC. All rights reserved

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program.

Licensed to)INT - spCol): Penn Stat Gravity\Colu	e Univer	rsity Park		e ID: 59	919-3	103395:	1-4-22545-2	CF68	
General Inf										
	e: F:\SPRING		/\Column I	esign\Fr	ame 2\2D	.col				
Column: Code:	Gravity Sy 2D ACI 318-11	stem			.neer: ah s: Engli					
	on: Design Biaxial				nderness: umn Type:					
Material Pr										
f'c = 4 Ec = 3 Ultimate Betal = 0	ksi 605 ksi strain = 0.	003 in/i	in	fy Es	= 60 ks = 29000	i ksi				
Section:										
-	.ar: Width =			Dept	:h = 12 i	n				
Gross sec Ix = 172 rx = 3.4 Xo = 0 i	641 in	Ag = 14	14 in^2	Iy = ry = Yo =	= 1728 i = 3.4641 = 0 in	n^4 in				
Reinforceme										
Bar Set:	ASTM A615 1 (in) Area	(in^2)	Size Dia	um (in) P	area (in^	2)	Size 1	Diam (in) A	rea (in^2)	
# 3 # 6 # 9 # 14	0.38 0.75 1.13 1.69	0.11 0.44 1.00 2.25	# 4 # 7 # 10 # 18	0.50 0.88 1.27 2.26	0. 0. 1. 4.	20 60 27 00	# 5 # 8 # 11	0.63 1.00 1.41	0.31 0.79 1.56	
Bar selec	ction: Minim).01 * Ag =	um numbe	er of bars	:						
Confineme	ent: Tied; # 0.8, phi(b	3 ties v	with #10 k	ars, #4						
Layout: F Pattern: Total ste	ectangular Equal Bar S eel area: As lear spacin	pacing = 7.62	(Cover to in^2 at n	transve		forc	ement)			
	Cover = 1.5									
Service Loa										
	Axial Loa ki									
1 Dead	188.3 89.6 0.0 14.0 188.3 66.0 0.0 0.0	 8 7	29.90	0.	00	-5	.43	0.00		
Wind	0.0	0	0.00	0.	00	0	.00	0.00		
Snow	14.0	1	4.64	0.	00	0	.00	0.00		
2 Dead Live	188.3 66.0	8 6	29.90 17.58	0.	00	-5 -6	.43 .92	0.00		
Snow	14.0		4.64	0.	00	0	.00	0.00		
	oad Factors. Factor									
Case	(%)									
Dead	100									
Live Wind	0 0									
EQ Snow	0 0									
Load Combir	nations:									
	400*Dead + 200*Dead +									

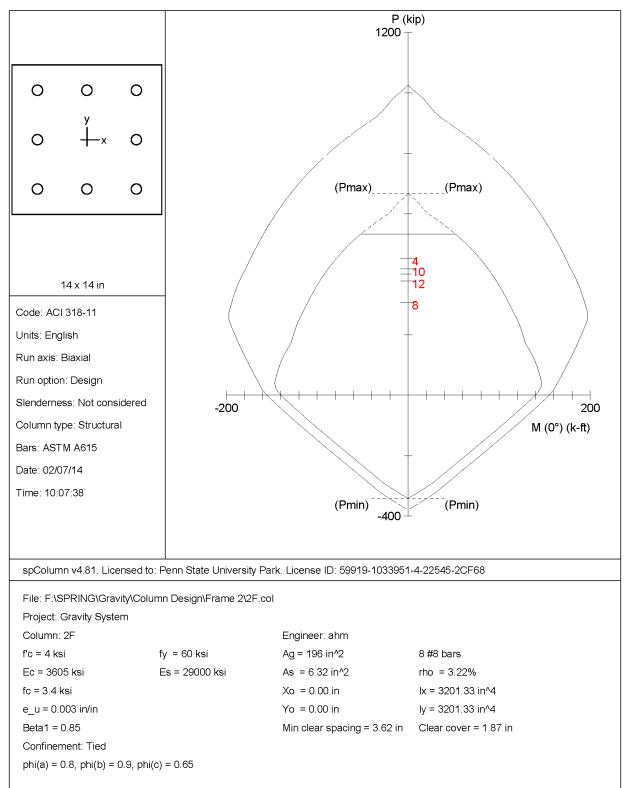
Page 2 02/07/14 09:57 AM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Gravity\Column Design\Frame 2\2D.col

Page 3 02/07/14 09:57 AM

U3 = 1.200*Dead + 1.000*Live + 0.000*Wind + 0.000*EarthQuake + 1.600*Snow

Factored Loads and Moments with Corresponding Capacities:


Design/Required ratio PhiMn/Mu >= 1.00 NOTE: Each loading combination includes the following cases: First line - at column top Second line - at column bottom Load Du March

No.	Load Combo	Pu kip	Mux k-ft	Muy k-ft	PhiMnx k-ft	PhiMny k-ft	PhiMn/Mu	NA depth in	Dt depth in	eps_t	Phi
1	1 U1	263.73 263.73	41.86	-7.60	81.01 93.36	-14.71	1.935	9.35 7.75	11.53 9.49	0.00070	0.650
-	1 U2	376.53 376.53	66.33 0.00	-8.42	67.15 70.45	-8.52	1.012	11.17 10.00	11.04	-0.00003	0.650
5	1 U3	338.14	60.88	-7.71	74.02	-9.37	1.216	10.35	11.04	0.00020	0.650
	2 U1	338.14 263.73	0.00 41.86	0.00 -7.60	79.44 81.01	0.00 -14.71	999.999 1.935	9.14 9.35	9.49 11.53	0.00011 0.00070	0.650 0.650
8 9	2 U2	263.73 338.76	0.00 66.33	0.00 -17.59	93.36 67.24	0.00 -17.83	999.999 1.014	7.75 11.25	9.49 12.14	0.00067 0.00024	0.650 0.650
10 11	2 U3	338.76 314.53	0.00 60.88	0.00 -13.44	79.30 72.84	0.00 -16.08	999.999 1.196	9.16 10.51	9.49 11.83	0.00011 0.00038	0.650 0.650
12		314.53	0.00	0.00	84.55	0.00	999.999	8.66	9.49	0.00029	0.650

*** End of output ***

Final Report

Column 2F

Page 1 02/07/14 10:05 AM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Gravity\Column Design\Frame 2\2F.col

				000	000			0								
				00	00			00								
00	000	0000	000	00		00	000	00	00	00	0 000	00000	000	0 000	000	
00	0	00	00	00		00	00	00	00	00	00	00	00	00	00	
00		00	00	00		00	00	00	00	00	00	00	00	00	00	
00	000	00	00	00		00	00	00	00	00	00	00	00	00	00	
	00	0000	000	00		00	00	00	00	00	00	00	00	00	00	
0	00	00		00	00	00	00	00 0	00	00	00	00	00	00	00	
00	000	00		000	000	00	000	000	00	0 000	00	00	00	00	00	(TM

spColumn v4.81 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright © 1988-2012, STRUCTUREPOINT, LLC. All rights reserved

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program.

Page 2 02/07/14 10:05 AM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Gravity\Column Design\Frame 2\2F.col General Information: File Name: F:\SPRING\Gravity\Column Design\Frame 2\2F.col Project: Gravity System Column: 2F Code: ACI 318-11 Engineer: ahm Units: English Run Option: Design Run Axis: Biaxial Slenderness: Not considered Column Type: Structural Material Properties: f'c = 4 ksi Ec = 3605 ksi Ultimate strain = 0.003 in/in fy = 60 ksi Es = 29000 ksi Beta1 = 0.85Section: Depth = 14 in Rectangular: Width = 14 in Gross section area, Ag = 196 in^2 Ix = 3201.33 in^4 rx = 4.04145 in Xo = 0 in Iy = 3201.33 in^4 ry = 4.04145 in Yo = 0 in Reinforcement: Bar Set: ASTM A615 Size Diam (in) Area (in^2) Size Diam (in) Area (in^2) Size Diam (in) Area (in^2) 0.50 0.51 # 4 0.50 # 7 0.88 _____ _____ # 5 0.6 ____ 0.20 0.63 3 0.38 0.11 0.31 # 0.75 0.44 1.00 0.88 1.27 0.60 1.27 # 6 # 8 1.00 0.79 # 9 # 14 1.13 1.00 # 10 2.25 # 18 # 11 1.41 1.56 1.69 2.26 4.00 Bar selection: Minimum number of bars Asmin = 0.01 * Ag = 1.96 in^2, Asmax = 0.08 * Ag = 15.68 in^2 Confinement: Tied; #3 ties with #10 bars, #4 with larger bars. phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65 Layout: Rectangular Pattern: Equal Bar Spacing (Cover to transverse reinforcement) Total steel area: As = 6.32 in^2 at rho = 3.22% Minimum clear spacing = 3.62 in 8 #8 Cover = 1.5 in Service Loads: Load Axial Load Mx@Top Mx@Bot k-ft k-ft Му 0 Тор My 0 Bot No. Case kip k-ft k-ft k-ft 29.90 219.09 114.46 1 Dead 0.00 7.91 0.00 17.58 0.00 Live 0.00 6.12 0.00 0.00 0.00 Wind 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ΕQ 4.64 0.00 Snow 14.01 0.00 2 Dead 219.09 29.90 17.58 0.00 7.91 0.00 92.11 0.00 0.00 Live 0.00 8.93 0.00 0.00 0.00 Wind 0.00 0.00 0.00 EO Snow 14.01 4.64 0.00 0.00 0.00 Sustained Load Factors: ____ Load Factor (%) Case Dead 100 Live 0 Wind 0 ΕO 0 Snow Ô

Load Combinations:

U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake + 0.000*Snow U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake + 0.500*Snow

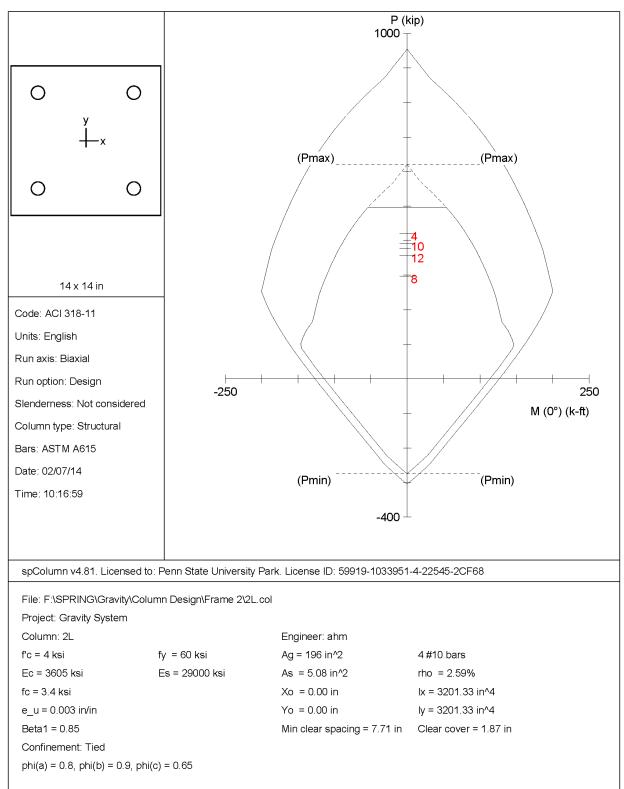
Peggy Ryan Williams Center | Page 87

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Gravity\Column Design\Frame 2\2F.col

Page 3 02/07/14 10:05 AM

U3 = 1.200*Dead + 1.000*Live + 0.000*Wind + 0.000*EarthQuake + 1.600*Snow

Factored Loads and Moments with Corresponding Capacities:


Design/Required ratio PhiMn/Mu >= 1.00 NOTE: Each loading combination includes the following cases: First line - at column top Second line - at column bottom Load

No.	Load Combo	Pu kip	Mux k-ft	Muy k-ft	PhiMnx k-ft	PhiMny k-ft	PhiMn/Mu	NA depth in	Dt depth in	eps_t	Phi
1	1 U1	306.73	41.86	11.07	97.71	25.85	2.334	11.21	14.66	0.00092	0.650
2		306.73	0.00	0.00	110.36	0.00	999.999	9.11	11.63	0.00083	0.650
3	1 U2	453.05	66.33	19.28	72.15	20.98	1.088	14.36	14.54	0.00004	0.650
4		453.05	0.00	0.00	78.55	0.00	999.999	12.30	11.63	-0.00016	0.650
5	1 U3	399.78	60.88	15.61	84.61	21.70	1.390	13.02	14.43	0.00032	0.650
6		399.78	0.00	0.00	92.14	0.00	999.999	11.04	11.63	0.00016	0.650
7	2 U1	306.73	41.86	11.07	97.71	25.85	2.334	11.21	14.66	0.00092	0.650
8		306.73	0.00	0.00	110.36	0.00	999.999	9.11	11.63	0.00083	0.650
9	2 U2	417.29	66.33	23.78	77.37	27.74	1.166	13.85	15.05	0.00026	0.650
10		417.29	0.00	0.00	87.99	0.00	999.999	11.45	11.63	0.00005	0.650
11	2 U3	377.43	60.88	18.42	86.64	26.22	1.423	12.83	14.84	0.00047	0.650
12		377.43	0.00	0.00	97.07	0.00	999.999	10.55	11.63	0.00031	0.650

*** End of output ***

Final Report

Column 2L

Page 1 02/07/14 10:14 AM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Gravity\Column Design\Frame 2\2L.col

				000	000			0								
				00	00			00								
000	000	0000	000	00		000	000	00		00	00	0 000	00000	000	0 000	000
00	0	00	00	00		00	00	00		00	00	00	00	00	00	00
00		00	00	00		00	00	00		00	00	00	00	00	00	00
000	000	00	00	00		00	00	00		00	00	00	00	00	00	00
	00	0000	000	00		00	00	00		00	00	00	00	00	00	00
0	00	00		00	00	00	00	00	0	00	00	00	00	00	00	00
000	000	00		000	000	000	000	00	0	000	0 000	00	00	00	00	00

spColumn v4.81 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright © 1988-2012, STRUCTUREPOINT, LLC. All rights reserved

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program.

Page 2 02/07/14 10:14 AM

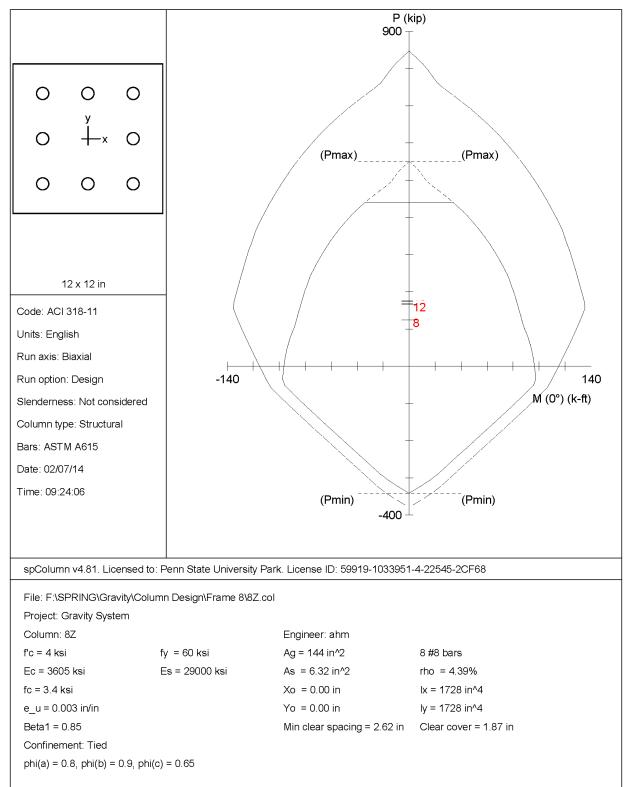
STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Gravity\Column Design\Frame 2\2L.col General Information: File Name: F:\SPRING\Gravity\Column Design\Frame 2\2L.col Project: Gravity System Column: 2L Code: ACI 318-11 Engineer: ahm Units: English Run Option: Design Run Axis: Biaxial Slenderness: Not considered Column Type: Structural Material Properties: f'c = 4 ksi Ec = 3605 ksi Ultimate strain = 0.003 in/in fy = 60 ksi Es = 29000 ksi Beta1 = 0.85Section: Depth = 14 in Rectangular: Width = 14 in Gross section area, Ag = 196 in^2 Ix = 3201.33 in^4 rx = 4.04145 in Xo = 0 in Iy = 3201.33 in^4 ry = 4.04145 in Yo = 0 in Reinforcement: Bar Set: ASTM A615 Size Diam (in) Area (in^2) Size Diam (in) Area (in^2) Size Diam (in) Area (in^2) 0.50 0.51 # 4 0.50 # 7 0.88 _____ _____ # 5 0.6 ____ 0.20 0.63 3 0.38 0.11 0.31 # 0.75 0.44 1.00 0.88 1.27 0.60 1.27 # 6 # 8 1.00 0.79 # 9 # 14 1.13 1.00 # 10 2.25 # 18 # 11 1.41 1.56 1.69 2.26 4.00 Bar selection: Minimum number of bars Asmin = 0.01 * Ag = 1.96 in^2, Asmax = 0.08 * Ag = 15.68 in^2 Confinement: Tied; #3 ties with #10 bars, #4 with larger bars. phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65 Layout: Rectangular Pattern: Equal Bar Spacing (Cover to transverse reinforcement) Total steel area: As = 5.08 in^2 at rho = 2.59% Minimum clear spacing = 7.71 in 4 #10 Cover = 1.5 in Service Loads: Load Axial Load k-ft Mx @ Bot k-ft k-ft Мх @ Тор Му 0 Тор My 0 Bot No. Case kip k-ft k-ft k-ft 212.46 1 Dead 29.90 -10.38 0.00 99.41 17.58 0.35 0.00 0.0 0.00 Live 0.00 0.00 0.00 0.00 0.00 Wind 0.00 0.00 0.00 ΕQ 4.64 0.00 Snow 14.01 0.00 212.46 81.01 0.00 2 Dead 29.90 17.58 0.00 -10.38 0.00 0.00 Live 0.00 -14.30 0.00 0.00 Wind 0.00 0.00 0.00 0.00 0.00 EO Snow 14.01 4.64 0.00 0.00 0.00 Sustained Load Factors: ____ Load Factor (%) Case Dead 100 Live 0 Wind 0 ΕO 0 Snow Ô Load Combinations: _____

U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake + 0.000*Snow U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake + 0.500*Snow STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Gravity\Column Design\Frame 2\2L.col

Page 3 02/07/14 10:14 AM

U3 = 1.200*Dead + 1.000*Live + 0.000*Wind + 0.000*EarthQuake + 1.600*Snow

Factored Loads and Moments with Corresponding Capacities:


Design/Required ratio PhiMn/Mu >= 1.00 NOTE: Each loading combination includes the following cases: First line - at column top Second line - at column bottom Load

		a ime - ac									
	Load	Pu	Mux	Muy	PhiMnx	PhiMny	PhiMn/Mu	NA depth	Dt depth	eps t	Phi
No.	Combo	kip	k-ft	k-ft	k-ft	k-ft		in	in		
1	1 U1	297.44	41.86	-14.53	93.72	-32.54	2.239	11.65	14.97	0.00086	0.650
2		297.44	0.00	0.00	111.08	0.00	999.999	9.15	11.49	0.00077	0.650
3	1 U2	421.01	66.33	-25.82	69.56	-27.07	1.049	14.64	15.00	0.00007	0.650
4		421.01	0.00	0.00	80.86	0.00	999.999	12.16	11.49	-0.00016	0.650
5	1 U3	376.78	60.88	-20.81	81.26	-27.77	1.335	13.41	14.87	0.00033	0.650
6		376.78	0.00	0.00	93.29	0.00	999.999	11.01	11.49	0.00013	0.650
7	2 U1	297.44	41.86	-14.53	93.72	-32.54	2.239	11.65	14.97	0.00086	0.650
8		297.44	0.00	0.00	111.08	0.00	999.999	9.15	11.49	0.00077	0.650
9	2 U2	391.57	66.33	-35.34	70.97	-37.81	1.070	14.30	15.67	0.00029	0.650
10		391.57	0.00	0.00	89.37	0.00	999.999	11.39	11.49	0.00003	0.650
11	2 U3	358.38	60.88	-26.76	80.53	-35.39	1.323	13.33	15.39	0.00046	0.650
12		358.38	0.00	0.00	97.86	0.00	999.999	10.56	11.49	0.00027	0.650

*** End of output ***

Column Line 8 Columns

Column 8Z

Page 1 02/07/14 09:23 AM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Gravity\Column Design\Frame 8\82.col

> 00 00 00 0 0000000000 0 00000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 (TM) 00000 0

spColumn v4.81 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright © 1988-2012, STRUCTUREFOINT, LLC. All rights reserved

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program.

Page 2 02/07/14 09:23 AM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Gravity\Column Design\Frame 8\8Z.col General Information: File Name: F:\SPRING\Gravity\Column Design\Frame 8\8Z.col Project: Gravity System Column: 8Z Code: ACI 318-11 Engineer: ahm Units: English Run Option: Design Run Axis: Biaxial Slenderness: Not considered Column Type: Structural Material Properties: f'c = 4 ksi Ec = 3605 ksi Ultimate strain = 0.003 in/in fy = 60 ksi Es = 29000 ksi Beta1 = 0.85Section: Depth = 12 in Rectangular: Width = 12 in Gross section area, Ag = 144 in^2 Ix = 1728 in^4 rx = 3.4641 in Xo = 0 in Iy = 1728 in^4 ry = 3.4641 in Yo = 0 in Reinforcement: Bar Set: ASTM A615 Size Diam (in) Area (in^2) Size Diam (in) Area (in^2) Size Diam (in) Area (in^2) 0.50 # 4 0.50 # 7 0.88 _____ _____ # 5 0. ____ 0.20 0.63 3 0.38 0.11 0.31 # 0.75 0.44 1.00 0.88 1.27 0.60 1.27 1.00 # 6 # 8 0.79 # 9 # 14 1.13 1.00 # 10 2.25 # 18 # 11 1.41 1.56 1.69 2.26 4.00 Bar selection: Minimum number of bars Asmin = 0.01 * Ag = 1.44 in^2, Asmax = 0.08 * Ag = 11.52 in^2 Confinement: Tied; #3 ties with #10 bars, #4 with larger bars. phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65 Layout: Rectangular Pattern: Equal Bar Spacing (Cover to transverse reinforcement) Total steel area: As = 6.32 in^2 at rho = 4.39% Minimum clear spacing = 2.62 in 8 #8 Cover = 1.5 in Service Loads: Load Axial Load Mx 0 Bot Mx @ Top Му 0 Тор My 0 Bot No. Case kip k-ft k-ft k-ft k-ft 88.83 38.36 1 Dead 0.00 0.00 35.40 0.00 0.00 0.00 Live 0.00 16.15 0.00 0.00 0.00 Wind 0.00 0.00 0.00 0.00 0.00 0.00 ΕQ 14.72 88.83 37.10 0.00 0.00 Snow 6.87 2 Dead 0.00 0.00 35.40 0.00 0.00 Live 0.00 16.98 0.00 0.00 Wind 0.00 0.00 0.00 0.00 0.00 EO Snow 14.72 0.00 0.00 6.87 0.00 Sustained Load Factors: ____ Load Factor (%) Case Dead 100 Live 0 Wind 0 ΕO 0 Snow Ô

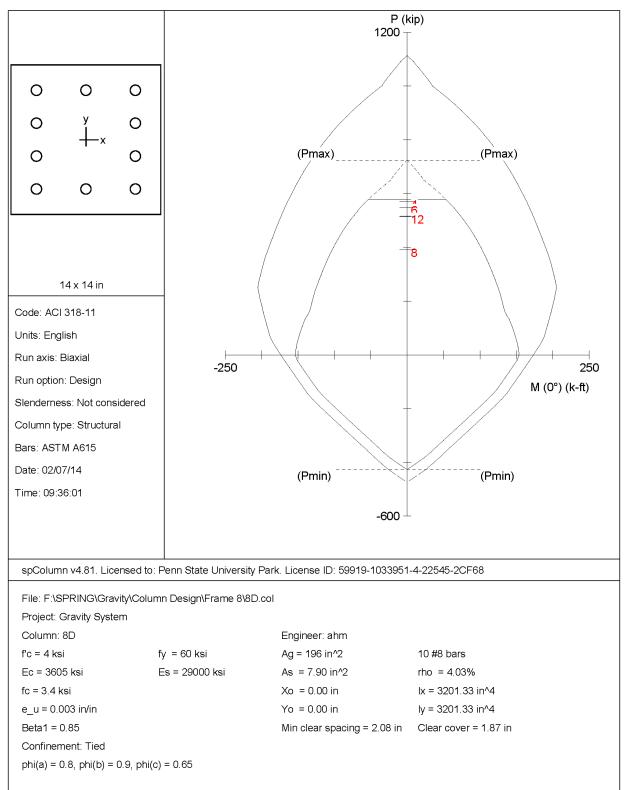
Load Combinations:

U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake + 0.000*Snow U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake + 0.500*Snow STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Gravity\Column Design\Frame 8\8Z.col

Page 3 02/07/14 09:23 AM

U3 = 1.200*Dead + 1.000*Live + 0.000*Wind + 0.000*EarthQuake + 1.600*Snow

Factored Loads and Moments with Corresponding Capacities:


Design/Required ratio PhiMn/Mu >= 1.00 NOTE: Each loading combination includes the following cases: First line - at column top Second line - at column bottom

		u IINe - au o			The AMerica	Di AMara	The 1984 1984 19	7.7 J	Dia Jamesh		m1. /
	Load	Pu	Mux	Muy	PhiMnx		PhiMn/Mu I	-	Dt aeptn	eps_t	Phi
No.	Combo	kip	k-ft	k-ft	k-ft	k-ft		in	in		
1	1 U1	124.36	0.00	49.56	-0.00	86.67	1.749	5.93	9.63	0.00187	0.650
2		124.36	0.00	0.00	86.67	0.00	999.999	5.93	9.63	0.00187	0.650
3	1 U2	175.33	0.00	71.76	-0.00	82.56	1.151	6.59	9.63	0.00138	0.650
4		175.33	0.00	0.00	82.56	0.00	999.999	6.59	9.63	0.00138	0.650
5	1 U3	168.51	0.00	69.62	-0.00	83.12	1.194	6.50	9.63	0.00144	0.650
6		168.51	0.00	0.00	83.12	0.00	999.999	6.50	9.63	0.00144	0.650
7	2 U1	124.36	0.00	49.56	-0.00	86.67	1.749	5.93	9.63	0.00187	0.650
8		124.36	0.00	0.00	86.67	0.00	999.999	5.93	9.63	0.00187	0.650
9	2 U2	173.32	0.00	73.08	-0.00	82.73	1.132	6.56	9.63	0.00140	0.650
10		173.32	0.00	0.00	82.73	0.00	999.999	6.56	9.63	0.00140	0.650
11	2 U3	167.25	0.00	70.45	-0.00	83.23	1.181	6.48	9.63	0.00146	0.650
12		167.25	0.00	0.00	83.23	0.00	999.999	6.48	9.63	0.00146	0.650

*** End of output ***

Final Report

Column 8D

Page 1 02/07/14 09:35 AM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Gravity\Column Design\Frame 8\8D.col

> 00 00 00 0 0000000000 0 00000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 (TM) 00000 0

spColumn v4.81 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright © 1988-2012, STRUCTUREPOINT, LLC. All rights reserved

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program.

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Gravity\Column Design\Frame 8\8D.col General Information: File Name: F:\SPRING\Gravity\Column Design\Frame 8\8D.col Project: Gravity System Column: 8D Code: ACI 318-11 Engineer: ahm Units: English Run Option: Design Run Axis: Biaxial Slenderness: Not considered Column Type: Structural Material Properties: f'c = 4 ksi Ec = 3605 ksi Ultimate strain = 0.003 in/in fy = 60 ksi Es = 29000 ksi Beta1 = 0.85Section: Depth = 14 in Rectangular: Width = 14 in Gross section area, Ag = 196 in^2 Ix = 3201.33 in^4 rx = 4.04145 in Xo = 0 in Iy = 3201.33 in^4 ry = 4.04145 in Yo = 0 in Reinforcement: Bar Set: ASTM A615 Size Diam (in) Area (in^2) Size Diam (in) Area (in^2) Size Diam (in) Area (in^2) 0.50 0.51 # 4 0.50 # 7 0.88 _____ _____ # 5 0.6 ____ 0.20 0.63 3 0.38 0.11 0.31 # 0.75 0.44 1.00 0.88 1.27 0.60 1.27 # 6 # 8 1.00 0.79 # 9 # 14 1.13 1.00 # 10 2.25 # 18 # 11 1.41 1.56 1.69 2.26 4.00 Bar selection: Minimum number of bars Asmin = 0.01 * Ag = 1.96 in^2, Asmax = 0.08 * Ag = 15.68 in^2 Confinement: Tied; #3 ties with #10 bars, #4 with larger bars. phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65 Layout: Rectangular Pattern: Equal Bar Spacing (Cover to transverse reinforcement) Total steel area: As = 7.90 in^2 at rho = 4.03% Minimum clear spacing = 2.08 in 10 #8 Cover = 1.5 in Service Loads: Load Axial Load kip Mx 0 Bot Mx @ Top Му 0 Тор My 0 Bot No. Case kip k-ft k-ft k-ft k-ft 278.71 131.44 1 Dead 0.00 0.00 -18.89 0.00 0.00 0.00 Live 0.00 -6.58 0.00 0.00 0.00 Wind 0.00 0.00 0.00 0.00 0.00 0.00 ΕQ 51.76 278.71 97.22 0.00 0.00 Snow -4.54 2 Dead 0.00 0.00 -18.89 0.00 0.00 Live 0.00 -10.91 0.00 0.00 0.00 Wind 0.00 0.00 0.00 0.00 EO Snow 51.76 0.00 0.00 -4.54 0.00 Sustained Load Factors: ____ Load Factor (%) Case Dead 100 Live 0 Wind 0 ΕO 0 Snow Ô

Page 2 02/07/14 09:35 AM

Load Combinations:

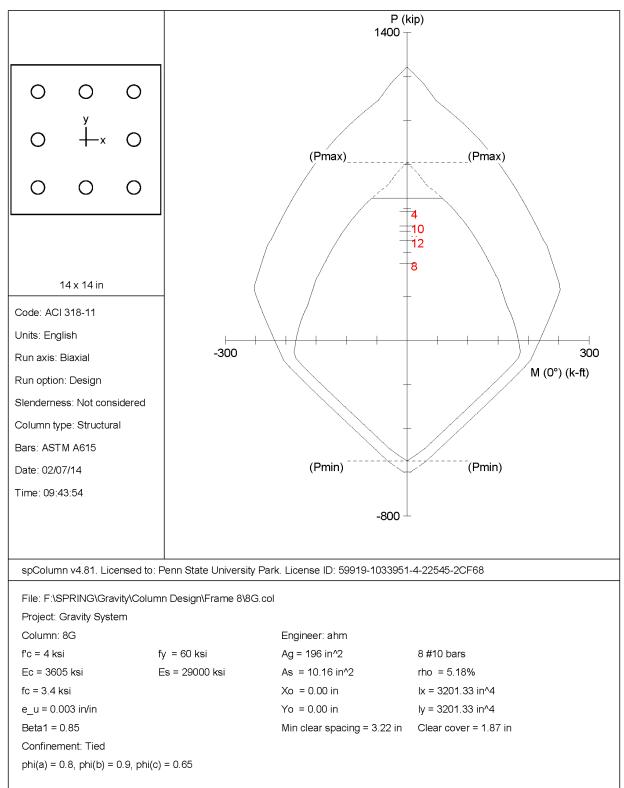
U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake + 0.000*Snow U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake + 0.500*Snow

Peggy Ryan Williams Center Page 99 STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Gravity\Column Design\Frame 8\8D.col

Page 3 02/07/14 09:35 AM

U3 = 1.200*Dead + 1.000*Live + 0.000*Wind + 0.000*EarthQuake + 1.600*Snow

Factored Loads and Moments with Corresponding Capacities:


Design/Required ratio PhiMn/Mu >= 1.00 NOTE: Each loading combination includes the following cases: First line - at column top Second line - at column bottom Load Du March

No.	Load Combo	Pu kip	Mux k-ft	Muy k-ft	PhiMnx k-ft	PhiMny k-ft	PhiMn/Mu	NA depth in	Dt depth in	eps_t	Phi
1 2	1 U1	390.19 390.19	0.00 0.00	-26.45	0.00 103.05	-112.66	4.260	10.32 10.28	11.63 11.63	0.00038	0.650
3 4	1 U2	570.64 570.64	0.00	-35.47 0.00	0.00 56.15	-59.71	1.684 999.999	14.55 14.38		-0.00060	0.650 0.650
5	1 U3	548.71 548.71	0.00	-36.51	0.00	-68.12	1.866	13.99 13.84		-0.00051	0.650
7 8	2 U1	390.19 390.19	0.00	-26.45	0.00 103.05	-112.66	4.260 999.999	10.32 10.28	11.63 11.63	0.00038	0.650 0.650
9 10	2 U2	515.88 515.88	0.00	-42.39	0.00 73.72	-79.18 0.00	1.868 999.999	13.03 12.93		-0.00032	0.650 0.650
11 12	2 U3	514.49 514.49	0.00 0.00	-40.84 0.00	0.00 74.13	-79.63 0.00	1.950 999.999	12.99 12.90		-0.00032	0.650 0.650

*** End of output ***

Final Report

Column 8G

Page 1 02/07/14 09:39 AM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Gravity\Column Design\Frame 8\8G.col

> 00 00 00 0 0000000000 0 00000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 (TM) 00000 0

spColumn v4.81 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright © 1988-2012, STRUCTUREPOINT, LLC. All rights reserved

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program.

Page 2 02/07/14 09:39 AM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Gravity\Column Design\Frame 8\8G.col General Information: File Name: F:\SPRING\Gravity\Column Design\Frame 8\8G.col Project: Gravity System Column: 8G Code: ACI 318-11 Engineer: ahm Units: English Run Option: Design Run Axis: Biaxial Slenderness: Not considered Column Type: Structural Material Properties: f'c = 4 ksi Ec = 3605 ksi Ultimate strain = 0.003 in/in fy = 60 ksi Es = 29000 ksi Beta1 = 0.85Section: Depth = 14 in Rectangular: Width = 14 in Gross section area, Ag = 196 in^2 Ix = 3201.33 in^4 rx = 4.04145 in Xo = 0 in Iy = 3201.33 in^4 ry = 4.04145 in Yo = 0 in Reinforcement: Bar Set: ASTM A615 Size Diam (in) Area (in^2) Size Diam (in) Area (in^2) Size Diam (in) Area (in^2) 0.50 0.51 # 4 0.50 # 7 0.88 _____ _____ # 5 0 ____ 0.20 0.63 3 0.38 0.11 0.31 # 0.75 0.44 1.00 0.88 1.27 0.60 1.27 # 6 # 8 1.00 0.79 # 9 # 14 1.13 1.00 # 10 2.25 # 18 # 11 1.41 1.56 1.69 2.26 4.00 Bar selection: Minimum number of bars Asmin = 0.01 * Ag = 1.96 in^2, Asmax = 0.08 * Ag = 15.68 in^2 Confinement: Tied; #3 ties with #10 bars, #4 with larger bars. phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65 Layout: Rectangular Pattern: Equal Bar Spacing (Cover to transverse reinforcement) Total steel area: As = 10.16 in^2 at rho = 5.18% Minimum clear spacing = 3.22 in 8 #10 Cover = 1.5 in Service Loads: Load Axial Load kip Mx 0 Bot Mx @ Top Му 0 Тор My 0 Bot No. Case kip k-ft k-ft k-ft k-ft 249.62 175.12 1 Dead 0.00 0.00 9.39 0.00 0.00 0.00 Live 0.00 3.42 0.00 0.00 0.00 0.00 0.00 0.00 Wind 0.00 0.00 0.00 0.00 ΕQ 0.00 Snow 13.66 1.28 2 Dead 249.62 0.00 0.00 9.39 0.00 132.67 0.00 Live 0.00 8.35 0.00 0.00 Wind 0.00 0.00 0.00 0.00 0.00 EO Snow 13.66 0.00 0.00 1.28 0.00 Sustained Load Factors: ____ Load Factor (%) Case Dead 100 Live 0 Wind 0 ΕO 0 Snow Ô

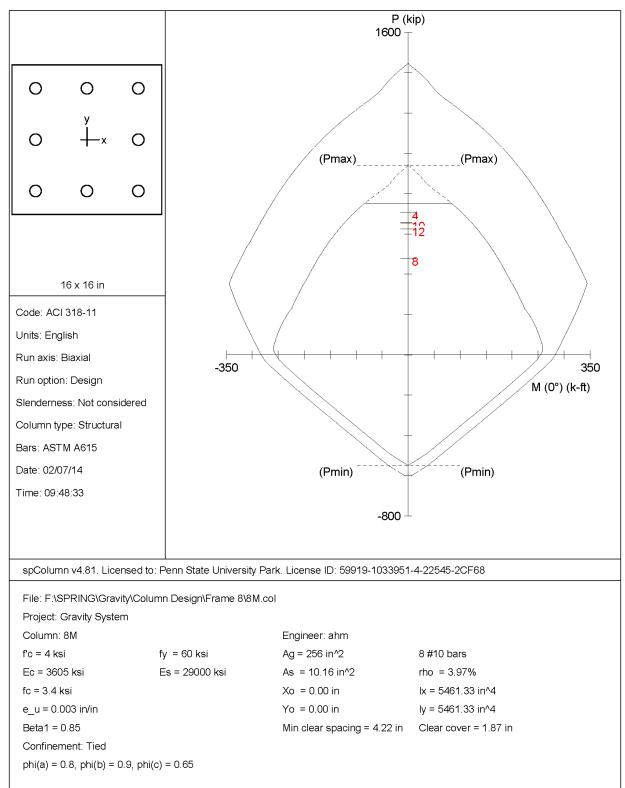
Load Combinations:

U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake + 0.000*Snow U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake + 0.500*Snow STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Gravity\Column Design\Frame 8\8G.col

Page 3 02/07/14 09:39 AM

U3 = 1.200*Dead + 1.000*Live + 0.000*Wind + 0.000*EarthQuake + 1.600*Snow

Factored Loads and Moments with Corresponding Capacities:


Design/Required ratio PhiMn/Mu >= 1.00 NOTE: Each loading combination includes the following cases: First line - at column top Second line - at column bottom Load

			COTUINIT DOLL			-					-
	Load	Pu	Mux	Muy	PhiMnx		PhiMn/Mu	NA depth	Dt depth	eps_t	Phi
No.	Combo	kip	k-ft	k-ft	k-ft	k-ft		in	in		
1	1 U1	349.47	0.00	13.15	-0.00	136.27	10.366	9.09	11.49	0.00079	0.650
2		349.47	0.00	0.00	136.27	0.00	999.999	9.09	11.49	0.00079	0.650
3	1 U2	586.57	0.00	17.38	-0.00	79.58	4.579	13.59	11.49	-0.00046	0.650
4		586.57	0.00	0.00	79.58	0.00	999.999	13.59	11.49	-0.00046	0.650
5	1 U3	496.52	0.00	16.74	-0.00	104.83	6.264	11.56	11.49	-0.00002	0.650
6		496.52	0.00	0.00	104.83	0.00	999.999	11.56	11.49	-0.00002	0.650
7	2 U1	349.47	0.00	13.15	-0.00	136.27	10.366	9.09	11.49	0.00079	0.650
8		349.47	0.00	0.00	136.27	0.00	999.999	9.09	11.49	0.00079	0.650
9	2 U2	518.65	0.00	25.27	-0.00	99.12	3.923	11.99	11.49	-0.00013	0.650
10		518.65	0.00	0.00	99.12	0.00	999.999	11.99	11.49	-0.00013	0.650
11	2 U3	454.07	0.00	21.67	-0.00	114.93	5.305	10.78	11.49	0.00020	0.650
12		454.07	0.00	0.00	114.93	0.00	999.999	10.78	11.49	0.00020	0.650

*** End of output ***

Final Report

Column 8M

Page 1 02/07/14 09:46 AM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Gravity\Column Design\Frame 8\8M.col

				000	000			0								
				00	00			00								
00	000	0000	000	00		00	000	00	00	00	0 00	00000	000	0 000	00C	
00	0	00	00	00		00	00	00	00	00	00	00	00	00	00	
00		00	00	00		00	00	00	00	00	00	00	00	00	00	
00	000	00	00	00		00	00	00	00	00	00	00	00	00	00	
	00	0000	000	00		00	00	00	00	00	00	00	00	00	00	
0	00	00		00	00	00	00	00 0	00	00	00	00	00	00	00	
00	000	00		000	000	00	000	000	00	000 0	00	00	00	00	00	(TM)

spColumn v4.81 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright © 1988-2012, STRUCTUREPOINT, LLC. All rights reserved

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program.

Page 2 02/07/14 09:46 AM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Gravity\Column Design\Frame 8\8M.col General Information: File Name: F:\SPRING\Gravity\Column Design\Frame 8\8M.col Project: Gravity System Column: 8M Code: ACI 318-11 Engineer: ahm Units: English Run Option: Design Run Axis: Biaxial Slenderness: Not considered Column Type: Structural Material Properties: f'c = 4 ksi Ec = 3605 ksi Ultimate strain = 0.003 in/in fy = 60 ksi Es = 29000 ksi Beta1 = 0.85Section: Depth = 16 in Rectangular: Width = 16 in Gross section area, Ag = 256 in^2 Ix = 5461.33 in^4 rx = 4.6188 in Xo = 0 in Iy = 5461.33 in^4 ry = 4.6188 in Yo = 0 in Reinforcement: Bar Set: ASTM A615 Size Diam (in) Area (in^2) Size Diam (in) Area (in^2) Size Diam (in) Area (in^2) 0.50 # 4 0.50 # 7 0.88 _____ _____ # 5 0 ____ 0.63 3 0.38 0.11 0.20 0.31 # 0.75 0.44 1.00 0.88 1.27 0.60 1.27 # 6 8 1.00 0.79 # 9 # 14 1.13 1.00 # 10 2.25 # 18 # 11 1.41 1.56 1.69 2.26 4.00 Bar selection: Minimum number of bars Asmin = 0.01 * Ag = 20.48 in^2, Asmax = 0.08 * Ag = 20.48 in^2 Confinement: Tied; #3 ties with #10 bars, #4 with larger bars. phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65 Layout: Rectangular Pattern: Equal Bar Spacing (Cover to transverse reinforcement) Total steel area: As = 10.16 in^2 at rho = 3.97% Minimum clear spacing = 4.22 in 8 #10 Cover = 1.5 in Service Loads: Load Axial Load Mx 0 Bot Mx @ Top Му 0 Тор My 0 Bot 340.47 170.19 No. Case k-ft k-ft k-ft k-ft 1 Dead 0.00 0.00 -4.39 0.00 0.00 0.00 Live 0.00 -2.69 0.00 0.00 0.00 0.00 0.00 0.00 Wind 0.00 0.00 0.00 0.00 0.00 ΕQ 0.00 Snow 48.28 -0.31 2 Dead 340.47 0.00 0.00 -4.39 0.00 138.39 0.00 0.00 0.00 Live 0.00 -6.69 0.00 0.00 Wind 0.00 0.00 0.00 0.00 EO Snow 48.28 0.00 0.00 -0.31 0.00 Sustained Load Factors: ____ Load Factor (%) Case Dead 100 Live 0 Wind 0 ΕO 0 Snow Ô

Load Combinations:

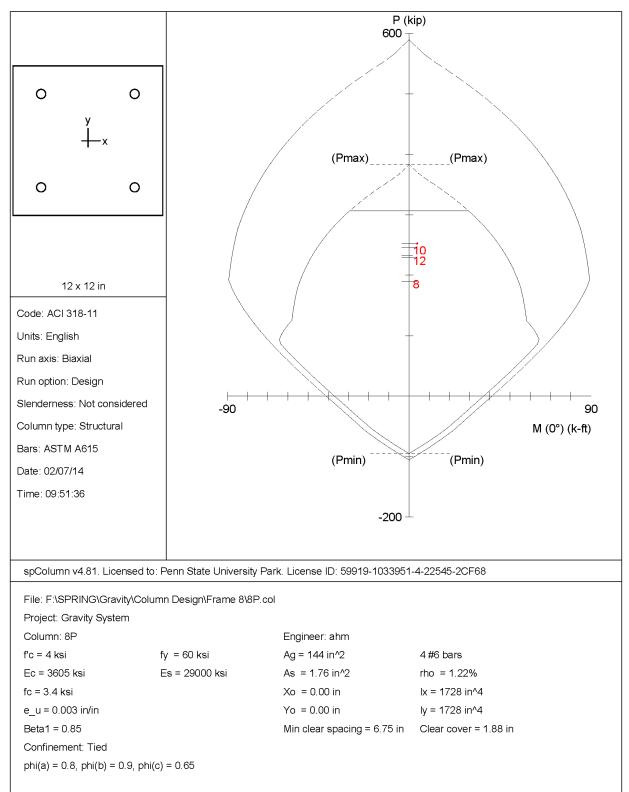
U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake + 0.000*Snow U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake + 0.500*Snow

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Gravity\Column Design\Frame 8\8M.col

Page 3 02/07/14 09:46 AM

U3 = 1.200*Dead + 1.000*Live + 0.000*Wind + 0.000*EarthQuake + 1.600*Snow

Factored Loads and Moments with Corresponding Capacities:


Design/Required ratio PhiMn/Mu >= 1.00 NOTE: Each loading combination includes the following cases: First line - at column top Second line - at column bottom Load Du March

No.	Load Combo	Pu kip	Mux k-ft	Muy k-ft	PhiMnx k-ft	PhiMny k-ft	PhiMn/Mu	NA depth in	Dt depth in	eps_t	Phi
2	1 U1	476.66	0.00 0.00	-6.15	0.00 173.19	-173.19 0.00	28.179 999.999	11.34 11.34	13.49 13.49	0.00057	0.650
4	1 U2 1 U3	705.01 705.01 656.00	0.00 0.00 0.00	-9.73 0.00 -8.45	0.00 103.33 0.00	-103.33 0.00 -121.81	10.623 999.999 14.408	15.65 15.65 14.63	13.49	-0.00041 -0.00041 -0.00023	0.650 0.650 0.650
6	2 U1	656.00 476.66	0.00 0.00	0.00 -6.15	121.81 0.00	0.00	999.999 28.179	14.63 11.34		-0.00023 0.00057	0.650 0.650
-	2 U2	476.66 654.13	0.00	0.00	173.19 0.00	0.00	999.999 7.594	11.34 14.59		0.00057	0.650
10 11 12	2 U3	654.13 624.20 624.20	0.00 0.00 0.00	0.00 -12.45 0.00	122.47 0.00 132.59	0.00 -132.59 0.00	999.999 10.647 999.999	14.59 13.99 13.99	13.49	-0.00023 -0.00011 -0.00011	0.650 0.650 0.650

*** End of output ***

Final Report

Column 8P

Page 1 02/07/14 09:51 AM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Gravity\Column Design\Frame 8\8P.col

> 00 00 00 0 0000000000 0 00000 00 00 000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 (TM) 00000 0

spColumn v4.81 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright © 1988-2012, STRUCTUREPOINT, LLC. All rights reserved

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Gravity\Column Design\Frame 8\8P.col General Information: File Name: F:\SPRING\Gravity\Column Design\Frame 8\8P.col Project: Gravity System Column: 8P Code: ACI 318-11 Engineer: ahm Units: English Run Option: Design Run Axis: Biaxial Slenderness: Not considered Column Type: Structural Material Properties: f'c = 4 ksi Ec = 3605 ksi Ultimate strain = 0.003 in/in fy = 60 ksi Es = 29000 ksi Beta1 = 0.85Section: Depth = 12 in Rectangular: Width = 12 in Gross section area, Ag = 144 in^2 Ix = 1728 in^4 rx = 3.4641 in Xo = 0 in Iy = 1728 in^4 ry = 3.4641 in Yo = 0 in Reinforcement: Bar Set: ASTM A615 Size Diam (in) Area (in^2) Size Diam (in) Area (in^2) Size Diam (in) Area (in^2) 0.50 # 4 0.50 # 7 0.88 _____ _____ # 5 0. ____ 0.20 0.63 3 0.38 0.11 0.31 # 0.75 0.44 1.00 0.88 1.27 0.60 1.27 1.00 # 6 8 0.79 # 9 # 14 1.13 1.00 # 10 2.25 # 18 # 11 1.41 1.56 1.69 2.26 4.00 Bar selection: Minimum number of bars Asmin = 0.01 * Ag = 1.44 in^2, Asmax = 0.08 * Ag = 11.52 in^2 Confinement: Tied; #3 ties with #10 bars, #4 with larger bars. phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65 Layout: Rectangular Pattern: Equal Bar Spacing (Cover to transverse reinforcement) Total steel area: As = 1.76 in^2 at rho = 1.22% Minimum clear spacing = 6.75 in 4 #6 Cover = 1.5 in Service Loads: Load Axial Load kip Mx 0 Bot Mx @ Top Му 0 Тор My 0 Bot No. Case kip k-ft k-ft k-ft k-ft 135.60 52.78 1 Dead 0.00 0.00 -2.400.00 0.00 0.00 Live 0.00 -4.66 0.00 0.00 0.00 Wind 0.00 0.00 0.00 0.00 0.00 0.00 ΕQ 11.07 135.60 48.32 0.00 0.00 0.00 Snow 0.14 2 Dead 0.00 0.00 -2.40 0.00 0.00 Live 0.00 -5.09 0.00 0.00 Wind 0.00 0.00 0.00 0.00 0.00 EO Snow 11.07 0.00 0.00 0.14 0.00 Sustained Load Factors: ____ Load Factor (%) Case Dead 100 Live 0 0

Page 2 02/07/14 09:51 AM

Wind ΕO 0 Snow Ô

Load Combinations:

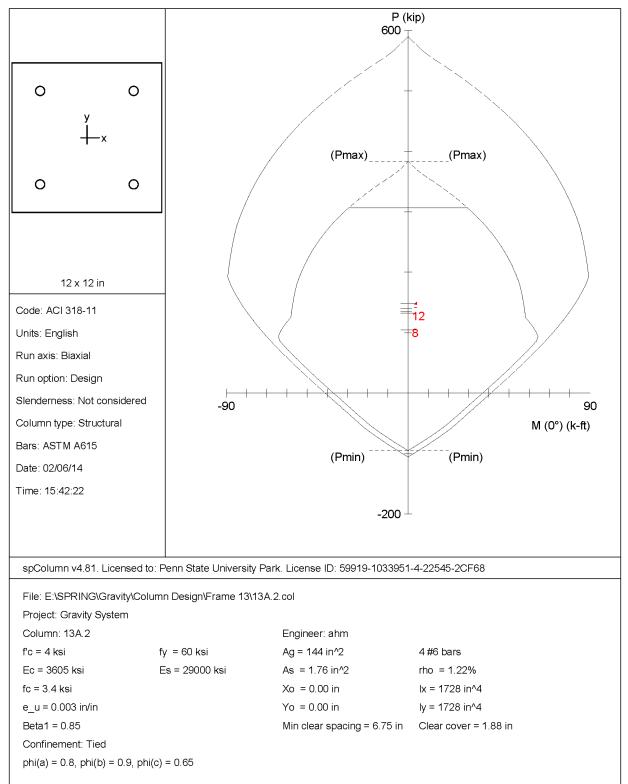
_____ U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake + 0.000*Snow U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake + 0.500*Snow

> Peggy Ryan Williams Center Page 111

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Gravity\Column Design\Frame 8\8P.col

Page 3 02/07/14 09:51 AM

U3 = 1.200*Dead + 1.000*Live + 0.000*Wind + 0.000*EarthQuake + 1.600*Snow


Factored Loads and Moments with Corresponding Capacities:

Design/Required ratio PhiMn/Mu >= 1.00 NOTE: Each loading combination includes the following cases: First line - at column top Second line - at column bottom Load

	Load	Pu	Mux	Muy	PhiMnx		PhiMn/Mu	NA depth	Dt depth	eps_t	Phi
No.	Combo	kip	k-ft	k-ft	k-ft	k-ft		in	in		
1	1 U1	189.84	0.00	-3.36	0.00	-54.04	16.082	7.61	9.75	0.00084	0.650
2		189.84	0.00	0.00	54.04	0.00	999.999	7.61	9.75	0.00084	0.650
3	1 U2	252.70	0.00	-10.27	0.00	-44.00	4.286	9.77	9.75	-0.00001	0.650
4		252.70	0.00	0.00	44.00	0.00	999.999	9.77	9.75	-0.00001	0.650
5	1 U3	233.21	0.00	-7.32	0.00	-47.81	6.534	9.08	9.75	0.00022	0.650
6		233.21	0.00	0.00	47.81	0.00	999.999	9.08	9.75	0.00022	0.650
7	2 U1	189.84	0.00	-3.36	0.00	-54.04	16.082	7.61	9.75	0.00084	0.650
8		189.84	0.00	0.00	54.04	0.00	999.999	7.61	9.75	0.00084	0.650
9	2 U2	245.57	0.00	-10.95	0.00	-45.47	4.151	9.51	9.75	0.00007	0.650
10		245.57	0.00	0.00	45.47	0.00	999.999	9.51	9.75	0.00007	0.650
	2 U3	228.75	0.00	-7.75	0.00	-48.58	6.272	8.92	9.75	0.00028	0.650
12		228.75	0.00	0.00	48.58	0.00	999.999	8.92	9.75	0.00028	0.650

Column Line 13 Columns

Column 13A.2

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 E:\SPRING\Gravity\Column Design\Frame 13\13A.2.col

Page 1 02/06/14 03:42 PM

				000	000			0								
				00	00			00								
000	000	000	000	00		00	000	00		00	00	0 000	00000	000	0 000	000
00	0	00	00	00		00	00	00		00	00	00	00	00	00	00
00		00	00	00		00	00	00		00	00	00	00	00	00	00
000	000	00	00	00		00	00	00		00	00	00	00	00	00	00
	00	0000	000	00		00	00	00		00	00	00	00	00	00	00
0	00	00		00	00	00	00	00	0	00	00	00	00	00	00	00
000	000	00		000	0000	00	000	000	>	000	0 000	00	00	00	00	00 (TM)

spColumn v4.81 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright © 1988-2012, STRUCTUREPOINT, LLC. All rights reserved

Page 2 02/06/14 03:42 PM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 E:\SPRING\Gravity\Column Design\Frame 13\13A.2.col General Information: File Name: E:\SPRING\Gravity\Column Design\Frame 13\13A.2.col Project: Gravity System Column: 13A.2 Code: ACI 318-11 Engineer: ahm Units: English Run Option: Design Run Axis: Biaxial Slenderness: Not considered Column Type: Structural Material Properties: f'c = 4 ksi Ec = 3605 ksi Ultimate strain = 0.003 in/in fy = 60 ksi Es = 29000 ksi Beta1 = 0.85Section: Depth = 12 in Rectangular: Width = 12 in Gross section area, Ag = 144 in^2 Ix = 1728 in^4 rx = 3.4641 in Xo = 0 in Iy = 1728 in^4 ry = 3.4641 in Yo = 0 in Reinforcement: Bar Set: ASTM A615 Size Diam (in) Area (in^2) Size Diam (in) Area (in^2) Size Diam (in) Area (in^2) 0.50 # 4 0.50 # 7 0.88 _____ _____ # 5 0 ____ 0.20 0.63 3 0.38 0.11 0.31 # 0.75 0.44 1.00 0.88 1.27 0.60 1.27 1.00 # 6 8 0.79 # 9 # 14 1.13 1.00 # 10 2.25 # 18 # 11 1.41 1.56 1.69 2.26 4.00 Bar selection: Minimum number of bars Asmin = 0.01 * Ag = 1.44 in^2, Asmax = 0.08 * Ag = 11.52 in^2 Confinement: Tied; #3 ties with #10 bars, #4 with larger bars. phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65 Layout: Rectangular Pattern: Equal Bar Spacing (Cover to transverse reinforcement) Total steel area: As = 1.76 in^2 at rho = 1.22% Minimum clear spacing = 6.75 in 4 #6 Cover = 1.5 in Service Loads: Load Axial Load Mx 0 Bot Mx @ Top Му 0 Тор My 0 Bot No. Case kip k-ft k-ft k-ft k-ft 13.26 74.75 1 Dead 0.00 0.00 0.00 33.42 0.00 0.00 Live 0.00 6.94 0.00 0.00 10.89 74.75 25.23 0.00 0.00 0.00 0.00 Wind 0.00 0.00 0.00 0.00 0.00 ΕQ 0.00 Snow 1.86 2 Dead 0.00 0.00 13.26 0.00 0.00 0.00 Live 0.00 0.00 Wind 0.00 0.00 0.00 0.00 0.00 EO Snow 10.89 0.00 0.00 1.86 0.00 Sustained Load Factors: ____ Load Factor (%) Case Dead 100 Live 0 Wind 0 ΕO 0 Snow Ô

Load Combinations:

U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake + 0.000*Snow U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake + 0.500*Snow

Peggy Ryan Williams Center Page 115

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 E:\SPRING\Gravity\Column Design\Frame 13\13A.2.col

Page 3 02/06/14 03:42 PM

U3 = 1.200*Dead + 1.000*Live + 0.000*Wind + 0.000*EarthQuake + 1.600*Snow

Factored Loads and Moments with Corresponding Capacities:

Design/Required ratio PhiMn/Mu >= 1.00 NOTE: Each loading combination includes the following cases: First line - at column top Second line - at column bottom Load

	Load	Pu	Mux	Muy	PhiMnx		PhiMn/Mu	NA depth		eps_t	Phi
No.	Combo	kip	k-ft	k-ft	k-ft	k-ft		in	in		
1	1 U1	104.65	0.00	18.56	-0.00	62.70	3.378	4.36	9.75	0.00370	0.789
2		104.65	0.00	0.00	62.70	0.00	999.999	4.36	9.75	0.00370	0.789
3	1 U2	148.62	0.00	27.95	-0.00	57.04	2.041	6.40	9.75	0.00157	0.650
4		148.62	0.00	0.00	57.04	0.00	999.999	6.40	9.75	0.00157	0.650
5	1 U3	140.54	0.00	25.83	-0.00	57.42	2.223	6.19	9.75	0.00173	0.650
6		140.54	0.00	0.00	57.42	0.00	999.999	6.19	9.75	0.00173	0.650
7	2 U1	104.65	0.00	18.56	-0.00	62.70	3.378	4.36	9.75	0.00370	0.789
8		104.65	0.00	0.00	62.70	0.00	999.999	4.36	9.75	0.00370	0.789
9	2 U2	135.51	0.00	29.26	-0.00	57.63	1.970	6.06	9.75	0.00183	0.650
10		135.51	0.00	0.00	57.63	0.00	999.999	6.06	9.75	0.00183	0.650
11	2 U3	132.35	0.00	26.65	-0.00	57.75	2.167	5.98	9.75	0.00189	0.650
12		132.35	0.00	0.00	57.75	0.00	999.999	5.98	9.75	0.00189	0.650

Final Report

Column 13B

Page 1 02/06/14 03:51 PM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 E:\SPRING\Gravity\Column Design\Frame 13\13B.col

> 00 00 00 0 0000000000 0 00000 00 00 000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 (TM) 00000 0

spColumn v4.81 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright © 1988-2012, STRUCTUREPOINT, LLC. All rights reserved

Page 2 02/06/14 03:51 PM

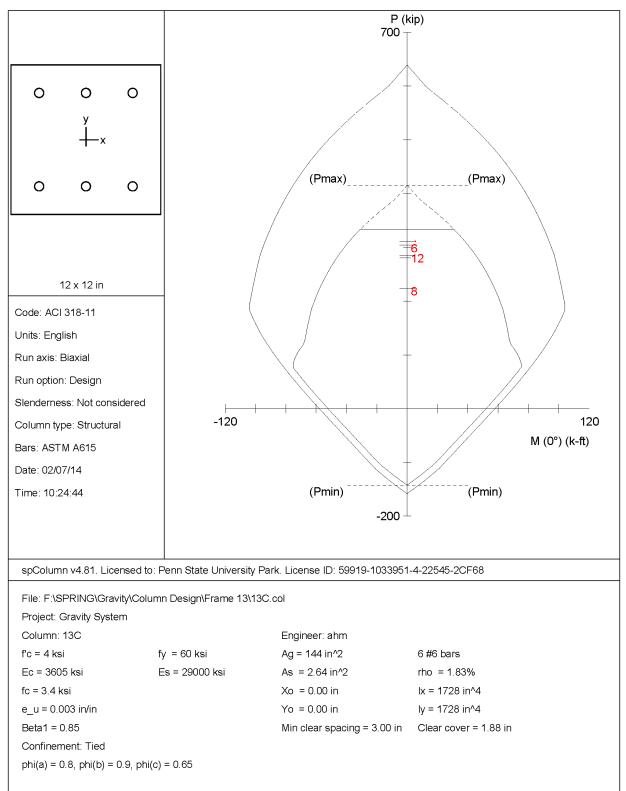
FUNCTURENT Provided Function of the probability for the product of the probability of the product							
This New: S:VSFRINGGravity/Column Design/Frame 13/135.colProject: cravity System Column 138 Code: Acl 318-11Engineer: ahm Units: EnglandRun Option: Design Run Axis: BlawialSiendereners: Not considered Column Type: StructuralMaterial Properties: To - 4.si Betal = 0.85fy = 60 ksi Es = 29000 ksi Ultimate strain = 0.003 in/in Betal = 0.85Section: To - 4.si Retragular: Width = 12 in Not = 0 inDepth = 12 in Yo = 0 in Yo = 0 inTo - 3005 ksi Hard Column Type: StructuralSize Diam (in) Area (in'2) Yo = 0 inPainforcement: Bar Set: ASTM A615 Size Diam (in) Area (in'2) File Diam (i	Licensed to: Penn State Universi	ty Park. L:		59919-1	L033951-4-2	2545-2CF68	
File Name: E: SPRING(Gravity)(clumn Design(Frame 13/133.col Froject: Gravity System Code: ACI 318-11 Run Axis: Blaxial Material Properties: To - 4. Kei Ec - 3.605 ksi Ultimate strain = 0.003 in/in Betal = 0.65 Section: Metangular: Width = 12 in Gross section area, Ag - 144 in ² IX - 1728 in ⁴ Ty - 1728 in ⁴ Ty - 1728 in ⁴ Ty - 3.4641 in Ty - 0 in Metangular: Width = 12 Size Diam (in) Area (in ²) Size Diam (in) Area (in ²) Si							
Column: 138 Code: ACI 318-1 Run Option: Design Run Ants: Blankal Material Properties:	File Name: E:\SPRING\Gravity\C	olumn Desig	gn\Frame 13	3\13B.co	b 1		
Run Àxis: Biaxial Column Type: Structural Material Properties: f to - 4 bai f to - 3605 mi Be - 29000 ksi Ultimate strain = 0.003 in/in Betal = 0.85 Section: The strain = 0.003 in/in Depth = 12 in Trees section area, $Ag = 144$ in ² Ix = 1/28 in ² Section: Material IX = 1/28 in ² Size Diam (in) Area (in ²) Size Diam (in) Area (in ²) Size Diam (in) Area (in ²) I = 0.75 0.44 \$ 7 0.88 0.60 \$ 8 0.00 \$ 8 0.00 0.777 \$ 9 1.13 1.00 \$ 10 1.27 1.27 \$ 11 1.41 1.56 Bar selection: Minimum number of bars Asmin = 0.01 * Ag = 1.44 in ² 2 at the 1.22 f 1.27 \$ 11 1.41 1.56 Dayout: Rectangular Patter: Equal Bar Spacing (Cover to transverse reinforcement) Total steel area; As = 1.76 in ² 2 at tho - 1.228 Hinimum Clear spacing = 6.75 in 4 46 Cover = 1.5 in Service Loads: Load Akial Load MX & Top MX & Bot MY & Top MY & Bot I Dead 128.26 0.000 0.000 - 5.42 0.000 Snow 24.47 0.000 0.000 - 5.42 0.000 Snow 24.47 0.000 0.000 - 6.28 0.000 Sn	Column: 13B Code: ACI 318-11						
$ \begin{array}{c} \hline F' & = 4 \ \text{ksi} \\ F' & = 3605 \ \text{ksi} \\ F' & = 5005 \ \text$						l	
Retargular: Width = 12 in Depth = 12 in Gross section area, $Ag = 144$ in ² Ix = 1728 in ² 4 Ix = 1728 in ² 4 Ix = 3.6441 in Xo = 0 in Retargular: Width = 12 in Bar Set: ASTM A615 Size Diam (in) Area (in ²) Size Diam (in) Area (in ²)	f'c = 4 ksi Ec = 3605 ksi Ultimate strain = 0.003 in/in		fy = 60 Es = 290	ksi 000 ksi			
Rectangular: Width = 12 in Depth = 12 in Gross section area, Ag = 144 in^2 Ix = 1728 in^4 rx = 3.4641 in ry = 3.4641 in Xo = 0 in Yo = 0 in Reinforcement: Bar set: ASTM A615 Size Diam (in) Area (in^2) Size Diam (in) Area (in^2) $\frac{1}{4}$ 3 0.38 0.11 $\frac{4}{4}$ 4 0.50 0.20 $\frac{4}{5}$ 5 0.63 0.31 $\frac{4}{6}$ 6 0.75 0.444 $\frac{4}{7}$ 0.88 0.60 $\frac{4}{6}$ 8 1.00 0.79 $\frac{4}{9}$ 9 1.13 1.00 $\frac{4}{100}$ 1.27 1.27 $\frac{4}{11}$ 1.41 1.56 Bar selection: Minimum number of bars Ammin = 0.01 * Ag = 1.44 in^2, Ammx = 0.08 * Ag = 11.52 in^2 Confinement: Tied; $\frac{4}{3}$ 1 is with $\frac{4}{10}$ Dars, $\frac{4}{4}$ with larger bars. phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65 Layout: Rectangular Pattern: Equal Bar Spacing (Cover to transverse reinforcement) Total stel area: Fa = 1.76 in^2 at rho = 1.228 Minimum clear spacing = 6.75 in $\frac{4}{10}$ 6 Cover = 1.5 in Service Loads: No. Case kip $\frac{k-ft}{k-ft}$ $\frac{k-ft}{k-ft}$ $\frac{k-ft}{k-ft}$ $\frac{k-ft}{k-ft}$ 1 Dead 128.26 0.000 0.000 -2.52 0.000 wind 0.00 0.000 0.000 -2.62 0.000 Disco 0.000 0.000 0.000 -2.62 0.000 $\frac{1}{20}$ 0.00 0.000 0.000 -2.62 0.000 $\frac{1}{20}$ 0.00 0.000 0.000 -2.8 0.000 2 Dead 128.26 0.000 0.000 -2.8 0.000 2 Dead 128.26 0.000 0.000 -0.28 0.000 $\frac{1}{20}$ 2.000 0.000 0.000 -0.28 0.000 $\frac{1}{20}$ 0.00 0.000 0.000 -0.28 0.000 $\frac{1}{20}$ 0.00 0.000 0.000 -0.28 0.000 $\frac{1}{20}$ Dad 128.26 0.000 0.000 -0.28 0.000 $\frac{1}{20}$ 0.00 0.000 0.000 -0.28 0.000 $\frac{1}{20}$ Dad 128.26 0.000 0.000 -0.28 0.000 $\frac{1}{20}$ Dad 100 $\frac{1}{20}$ Dad 100 $\frac{1}{2$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Depth = 12	in			
Bar Set: ASTM A615 Size Diam (in) Area (in'2) Size Diam (in) Area (in'2) Size Diam (in) Area (in'2) # 3 0.38 0.11 # 4 0.50 0.20 # 5 0.63 0.31 # 6 0.75 0.44 # 7 0.88 0.60 # 8 1.00 0.79 # 9 1.13 1.00 # 10 1.27 1.27 # 11 1.41 1.56 # 14 1.69 2.25 # 18 2.26 4.00 4.00 1.41 1.56 Bar selection: Minimum number of bars Asmin = 0.01 * Ag = 1.44 in'2, Asmax = 0.08 * Ag = 11.52 in'2 Confinement: Tied; #3 ties with #10 bars, #4 with larger bars. phi(a) = 0.3, phi(b) = 0.9, phi(c) = 0.65 Layout: Rectangular Pattern: Equal Bar Spacing (Cover to transverse reinforcement) Total steel area: As = 1.76 in'2 at rho = 1.22% Minimum clear spacing = 6.75 in 4 4 #6 Cover = 1.5 in Service Loads:	$Ix = 1728 in^{4}$ rx = 3.4641 in		rv = 3.46	541 in			
Bar Set: ASTM A615 Size Diam (in) Area (in'2) Size Diam (in') Area (in'2) Size Diam (in') Area (in') Area (in') Size Diam (in') Area (in') Area (in') Size Diam (in') Area (
<pre># 3 0.38 0.11 # 4 0.50 0.20 # 5 0.63 0.31 # 6 0.75 0.44 # 7 0.88 0.60 # 8 1.00 0.79 # 9 1.13 1.00 # 10 1.27 1.27 # 11 1.41 1.56 # 14 1.69 2.25 # 18 2.26 4.00 Bar selection: Minimum number of bars Asmin = 0.01 * Ag = 1.44 in², Asmax = 0.08 * Ag = 11.52 in² Confinement: Tied; #3 ties with #10 bars, #4 with larger bars. phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65 Layout: Rectangular Pattern: Equal Bar Spacing (Cover to transverse reinforcement) Total steel area: As = 1.76 in² at rho = 1.22% Minimum Clear spacing = 6.75 in 4 #6 Cover = 1.5 in Service Loads:</pre>	Bar Set: ASTM A615 Size Diam (in) Area (in^2) S	ize Diam (:	in) Area (i	n^2)	Size Diam	(in) Area	(in^2)
Bar selection: Minimum number of bars Asmin = 0.01 * Ag = 1.44 in^2, Asmax = 0.08 * Ag = 11.52 in^2 Confinement: Tied; #3 ties with #10 bars, #4 with larger bars. phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65 Layout: Rectangular Pattern: Equal Bar Spacing (Cover to transverse reinforcement) Total steel area: As = 1.76 in^2 at rho = 1.22% Minimum clear spacing = 6.75 in 4 #6 Cover = 1.5 in Service Loads: 	# 3 0.38 0.11 # # 6 0.75 0.44 # # 9 1.13 1.00 # # 14 1.69 2.25 #	4 0 7 0 10 1 18 2	.50 .88 .27 .26	0.20 0.60 1.27 4.00	# 5 # 8 # 11	0.63 1.00 1.41	0.31 0.79 1.56
phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65 Layout: Rectangular Pattern: Equal Bar Spacing (Cover to transverse reinforcement) Total steel area: As = 1.76 in 2 at rho = 1.22% Minimum clear spacing = 6.75 in 4 #6 Cover = 1.5 in Service Loads: 	Bar selection: Minimum number	of bars					
Pattern: Equal Bar Spacing (Cover to transverse reinforcement) Total steel area: As = 1.76 in^2 at rho = 1.22% Minimum clear spacing = 6.75 in 4 #6 Cover = 1.5 in Service Loads: 				larger	bars.		
Service Loads: Load Axial Load Mx @ Top My @ Top My @ Bot No. Case kip k-ft k-ft k-ft k-ft 1 Dead 128.26 0.00 0.00 -5.42 0.00 Live 60.11 0.00 0.00 -2.50 0.00 Wind 0.00 0.00 0.00 0.00 0.00 Snow 24.47 0.00 0.00 -5.42 0.00 2 Dead 128.26 0.00 0.00 0.00 0.00 Snow 24.47 0.00 0.00 -5.42 0.00 Wind 0.00 0.00 -6.00 0.00 0.00 EQ 0.00 0.00 0.00 0.00 0.00 Sustained Load Factors:	Pattern: Equal Bar Spacing (C Total steel area: As = 1.76 in	^2 at rho =	ansverse re = 1.22%	inforce	ement)		
Load Axial Load Mx @ Top Mx @ Bot My @ Top My @ Bot No. Case kip k-ft k-ft k-ft k-ft k-ft k-ft 1 Dead 128.26 0.00 0.00 -5.42 0.00 Live 60.11 0.00 0.00 -2.50 0.00 Wind 0.00 0.00 0.00 0.00 0.00 EQ 0.00 0.00 0.00 0.00 0.00 2 Dead 128.26 0.00 0.00 -0.28 0.00 2 Dead 128.26 0.00 0.00 -0.28 0.00 Live 36.91 0.00 0.00 -5.42 0.00 Wind 0.00 0.00 0.00 0.00 0.00 EQ 0.00 0.00 0.00 0.00 0.00 Sustained Load Factors:	4 #6 Cover = 1.5 in						
Load Axial Load Mx @ Top k-ft My @ Top k-ft My @ Top k-ft My @ Bot k-ft 1 Dead 128.26 0.00 0.00 -5.42 0.00 Live 60.11 0.00 0.00 -2.50 0.00 Wind 0.00 0.00 0.00 0.00 0.00 Snow 24.47 0.00 0.00 -5.42 0.00 2 Dead 128.26 0.00 0.00 0.00 2 Dead 128.26 0.00 -5.42 0.00 2 Dead 128.26 0.00 -5.42 0.00 Live 36.91 0.00 0.00 -5.42 0.00 Wind 0.00 0.00 0.00 0.00 0.00 Sustained Load Factors:							
1 Dead 128.26 0.00 -5.42 0.00 Live 60.11 0.00 0.00 -2.50 0.00 Wind 0.00 0.00 0.00 0.00 0.00 EQ 0.00 0.00 0.00 0.00 0.00 Snow 24.47 0.00 0.00 -5.42 0.00 2 Dead 128.26 0.00 0.00 -5.42 0.00 Live 36.91 0.00 0.00 -5.42 0.00 Wind 0.00 0.00 -5.42 0.00 EQ 0.00 0.00 -5.42 0.00 Wind 0.00 0.00 -5.42 0.00 Sustained Load Factors:	Load Axial Load Mx @ No. Case kip						
Load Factor Case (%) Dead 100 Live 0 Wind 0 EQ 0	1 Dead 128.26 Live 60.11 Wind 0.00 EQ 0.00 Snow 24.47 2 Dead 128.26 Live 36.91 Wind 0.00 EQ 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-5. -2. 0. -0. -5. -4. 0.	42 50 00 28 42 91 .00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
Load Factor Case (%) Dead 100 Live 0 Wind 0 EQ 0							
Dead 100 Live 0 Wind 0 EQ 0	Load Factor Case (%)						
	Dead 100 Live 0 Wind 0 EQ 0						

Load Combinations:

U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake + 0.000*Snow U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake + 0.500*Snow

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 E:\SPRING\Gravity\Column Design\Frame 13\13B.col

Page 3 02/06/14 03:51 PM


U3 = 1.200*Dead + 1.000*Live + 0.000*Wind + 0.000*EarthQuake + 1.600*Snow

Factored Loads and Moments with Corresponding Capacities:

		s and Moments			-											
Desi	Design/Required ratio PhiMn/Mu >= 1.00 NOTE: Each loading combination includes the following cases: First line - at column top Second line - at column bottom Load Product of Marco DebiMar DebiMar DebiMar DebiMar Mu donth Dt donth orgat. Debi															
NT -	Load															
NO.		ктр	K-IU	K-LU	K-IU	K-LL		11								
1	1 U1	179.56	0.00	-7.59	0.00	-55.14	7.266	7.28	9.75	0.00102	0.650					
2		179.56	0.00	0.00	55.14	0.00	999.999	7.28	9.75	0.00102	0.650					
3	1 U2	262.32	0.00	-10.64	0.00	-41.85	3.931	10.12	9.75	-0.00011	0.650					
4		262.32	0.00	0.00	41.85	0.00	999.999	10.12	9.75	-0.00011	0.650					
5	1 U3	253.17	0.00	-9.45	0.00	-43.90	4.644	9.79	9.75	-0.00001	0.650					
6		253.17	0.00	0.00	43.90	0.00	999.999	9.79	9.75	-0.00001	0.650					
7	2 U1	179.56	0.00	-7.59	0.00	-55.14	7.266	7.28	9.75	0.00102	0.650					
8		179.56	0.00	0.00	55.14	0.00	999.999	7.28	9.75	0.00102	0.650					
9	2 U2	225.20	0.00	-14.50	0.00	-49.18	3.391	8.80	9.75	0.00033	0.650					
10		225.20	0.00	0.00	49.18	0.00	999.999	8.80	9.75	0.00033	0.650					
11	2 U3	229.97	0.00	-11.86	0.00	-48.37	4.078	8.96	9.75	0.00026	0.650					
12		229.97	0.00	0.00	48.37	0.00	999.999	8.96	9.75	0.00026	0.650					

Final Report

Column 13C

Page 1 02/07/14 10:24 AM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Gravity\Column Design\Frame 13\13C.col

				000	000			0							
				00	00			00							
000	000	0000	000	00		000	000	00	00	00	0 000	00000	000	0 000	000
00	0	00	00	00		00	00	00	00	00	00	00	00	00	00
00		00	00	00		00	00	00	00	00	00	00	00	00	00
000	000	00	00	00		00	00	00	00	00	00	00	00	00	00
	00	0000	000	00		00	00	00	00	00	00	00	00	00	00
0	00	00		00	00	00	00	00 0	00	00	00	00	00	00	00
000	000	00		000	000	000	000	000	00	0 000	00	00	00	00	00 (TM)

spColumn v4.81 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright © 1988-2012, STRUCTUREPOINT, LLC. All rights reserved

Page 2 02/07/14 10:24 AM

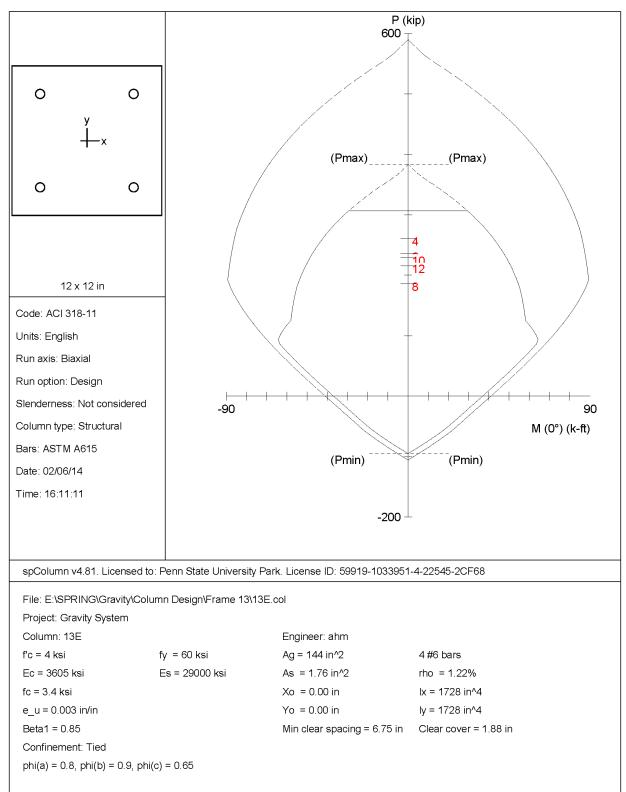
Licensed to	INT - spColu : Penn State ravity\Colum	Univer	sity Park			: 59919	-10339	51-4-22545	-2CF68		
General Inf											
File Name		Gravity	\Column De	esiqn∖F	rame 1	L3\13C.	col				
Project:	Gravity Sys 13C ACI 318-11				ineer:						
Code:	ACI 318-11			Uni	ts: Er	nglish					
	n: Design Biaxial					ess: No Ape: St					
Material Pr											
f'c = 4 Ec = 3 Ultimate : Betal = 0	ksi 605 ksi strain = 0.0	103 in/i	n	fy Es	= 60 = 29) ksi 9000 ks	i				
Section:											
Rectangul	ar: Width =	12 in		Dep	th = 1	l2 in					
Gross sec	tion area, A	.g = 14	4 in^2								
Ix = 172; rx = 3.4 Xo = 0 i;	8 in^4 641 in			ry		28 in^4 1641 in In					
Reinforceme:											
Bar Set: J Size Diam		in^2)	Size Diar	m (in)	Area	(in^2)	Size	Diam (in)	Area	(in^2)	
# 3	0.38	0.11	# 4	0.50		0.20	 # 5	0.63		0.31	
# 6 # 9 # 14	0.38 0.75 1.13 1.69	0.44 1.00 2.25	# 7 # 10 # 18	0.88 1.27 2.26		0.60 1.27 4.00	# 8 # 11	1.00 1.41		0.79 1.56	
Bar selec	tion: Minimu .01 * Ag = 1	m numbe	r of bars								
	nt: Tied; #3 0.8, phi(b)				4 with	n large	r bars				
Pattern: Total ste	ectangular Equal Bar Sp el area: As lear spacing	= 2.64	in^2 at rl			reinfor	cement)			
6 #6 Co	ver = 1.5 in	L									
Service Loa											
	Axial Load kip										
1 Dead	159.87 64.95 0.00 29.39 159.87 46.10 0.00		0.00	0	.00	-	0.66	0.0	0		
Wind	0.00	1	0.00	0	.00	-	0.00	0.0	0		
EQ Show	0.00 29.39		0.00	0	.00	-	0.00	0.0	0 0		
2 Dead	159.87		0.00	Ő	.00	-	0.66	0.0	0		
Live Wind	46.10	1	0.00	0	.00	-	2.20 0.00	0.0	0		
EQ Snow	0.00 29.39		0.00 0.00	~	.00 .00		0.00 0.85	0.0	~		
	oad Factors:										
	Factor										
	(%)										
Dead Live	100 0										
Wind EQ	0										
Snow	0										

Load Combinations:

U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake + 0.000*Snow U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake + 0.500*Snow STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Gravity\Column Design\Frame 13\13C.col

Page 3 02/07/14 10:24 AM

U3 = 1.200*Dead + 1.000*Live + 0.000*Wind + 0.000*EarthQuake + 1.600*Snow


Factored Loads and Moments with Corresponding Capacities:

Design/Required ratio PhiMn/Mu >= 1.00 NOTE: Each loading combination includes the following cases: First line - at column top Second line - at column bottom

No	Load Combo	Pu	Mux k-ft	Muy k-ft	PhiMnx k-ft	PhiMny k-ft	PhiMn/Mu	NA depth in	÷	eps_t	Phi
No.		kip	K-LL	K-IL	K-IL	K-LU		111 	in		
1	1 U1	223.82	0.00	-0.92	0.00	-51.24	55.450	8.34	9.75	0.00051	0.650
2		223.82	0.00	0.00	57.61	0.00	999.999	8.34	9.75	0.00051	0.650
3	1 U2	310.46	0.00	-2.50	0.00	-34.73	13.908	11.13	9.75	-0.00037	0.650
4		310.46	0.00	0.00	38.31	0.00	999.999	11.19	9.75	-0.00039	0.650
5	1 U3	303.82	0.00	-2.95	0.00	-36.46	12.351	10.90	9.75	-0.00032	0.650
6		303.82	0.00	0.00	40.24	0.00	999.999	10.96	9.75	-0.00033	0.650
7	2 U1	223.82	0.00	-0.92	0.00	-51.24	55.450	8.34	9.75	0.00051	0.650
8		223.82	0.00	0.00	57.61	0.00	999.999	8.34	9.75	0.00051	0.650
9	2 U2	280.30	0.00	-4.74	0.00	-41.92	8.849	10.11	9.75	-0.00011	0.650
10		280.30	0.00	0.00	46.41	0.00	999.999	10.15	9.75	-0.00012	0.650
11	2 U3	284.97	0.00	-4.35	0.00	-40.91	9.401	10.26	9.75	-0.00015	0.650
12		284.97	0.00	0.00	45.26	0.00	999.999	10.31	9.75	-0.00016	0.650

Final Report

Column 13E

Page 1 02/06/14 04:09 PM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 E:\SPRING\Gravity\Column Design\Frame 13\13E.col

> 00 00 00 0 0000000000 0 00000 00 00 000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 (TM) 00000 0

spColumn v4.81 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright © 1988-2012, STRUCTUREPOINT, LLC. All rights reserved

Page 2 02/06/14 04:09 PM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 E:\SPRING\Gravity\Column Design\Frame 13\13E.col General Information: File Name: E:\SPRING\Gravity\Column Design\Frame 13\13E.col Project: Gravity System Column: 13E Code: ACI 318-11 Engineer: ahm Units: English Run Option: Design Run Axis: Biaxial Slenderness: Not considered Column Type: Structural Material Properties: f'c = 4 ksi Ec = 3605 ksi Ultimate strain = 0.003 in/in fy = 60 ksi Es = 29000 ksi Beta1 = 0.85Section: Depth = 12 in Rectangular: Width = 12 in Gross section area, Ag = 144 in^2 Ix = 1728 in^4 rx = 3.4641 in Xo = 0 in Iy = 1728 in^4 ry = 3.4641 in Yo = 0 in Reinforcement: Bar Set: ASTM A615 Size Diam (in) Area (in^2) Size Diam (in) Area (in^2) Size Diam (in) Area (in^2) 0.50 # 4 0.50 # 7 0.88 _____ _____ # 5 0 ____ 0.20 0.63 3 0.38 0.11 0.31 # 0.75 0.44 1.00 0.88 1.27 0.60 1.27 1.00 # 6 8 0.79 # 9 # 14 1.13 1.00 # 10 2.25 # 18 # 11 1.41 1.56 1.69 2.26 4.00 Bar selection: Minimum number of bars Asmin = 0.01 * Ag = 1.44 in^2, Asmax = 0.08 * Ag = 11.52 in^2 Confinement: Tied; #3 ties with #10 bars, #4 with larger bars. phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65 Layout: Rectangular Pattern: Equal Bar Spacing (Cover to transverse reinforcement) Total steel area: As = 1.76 in^2 at rho = 1.22% Minimum clear spacing = 6.75 in 4 #6 Cover = 1.5 in Service Loads: Load Axial Load kip Mx 0 Bot Mx @ Top Му 0 Тор My 0 Bot No. Case kip k-ft k-ft k-ft k-ft 132.52 60.67 1 Dead 0.00 0.00 0.69 0.00 0.00 0.00 Live 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 Wind 0.00 0.00 0.00 ΕQ 0.00 Snow 9.81 0.27 132.52 40.63 0.00 2 Dead 0.00 0.00 0.69 0.00 0.00 Live 0.00 1.72 0.00 0.00 Wind 0.00 0.00 9.81 0.00 0.00 0.00 0.00 EO Snow 0.00 0.00 0.27 0.00 Sustained Load Factors: ____ Load Factor (%) Case Dead 100 Live 0 Wind 0 ΕO 0 Snow Ô

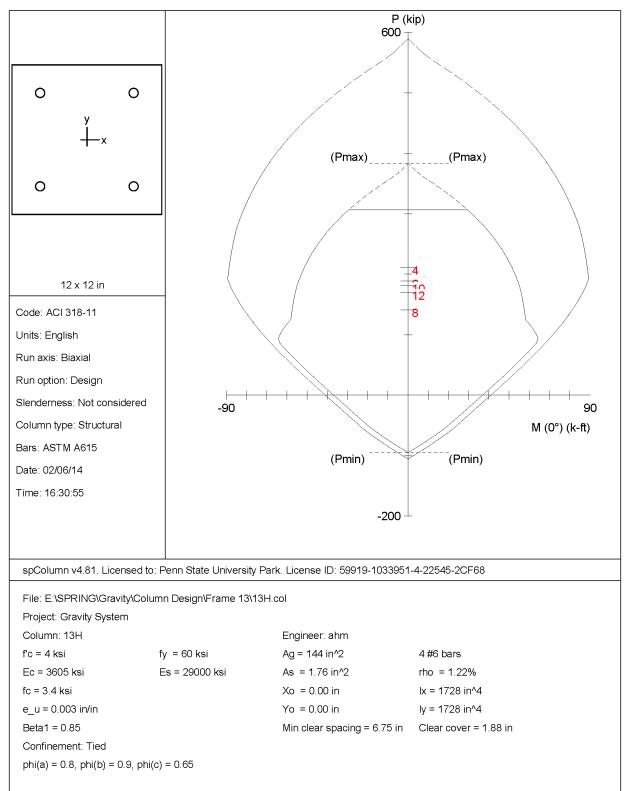
Load Combinations:

U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake + 0.000*Snow U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake + 0.500*Snow

Peggy Ryan Williams Center Page 127

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 E:\SPRING\Gravity\Column Design\Frame 13\13E.col

Page 3 02/06/14 04:09 PM


U3 = 1.200*Dead + 1.000*Live + 0.000*Wind + 0.000*EarthQuake + 1.600*Snow

Factored Loads and Moments with Corresponding Capacities:

		actored Loads and Moments with Corresponding Capacities:														
Desi	Design/Required ratio PhiMn/Mu >= 1.00 NOTE: Each loading combination includes the following cases: First line - at column top Second line - at column bottom															
	Load			Muy	PhiMnx			-	-	eps_t	Phi					
No.	Combo	kip	k-tt	k-it	k-ft	k-ft		in	in							
1	1 U1	185.53	0.00	0.97	-0.00	54.51	56.432	7.47	9.75	0.00092	0.650					
2		185.53	0.00	0.00	54.51	0.00	999.999	7.47	9.75	0.00092	0.650					
3	1 U2	261.00	0.00	1.12	-0.00	42.15	37.536	10.07	9.75	-0.00010	0.650					
4		261.00	0.00	0.00	42.15	0.00	999.999	10.07	9.75	-0.00010	0.650					
5	1 U3	235.39	0.00	1.36	-0.00	47.41	34.864	9.15	9.75	0.00020	0.650					
6		235.39	0.00	0.00	47.41	0.00	999.999	9.15	9.75	0.00020	0.650					
7	2 U1	185.53	0.00	0.97	-0.00	54.51	56.432	7.47	9.75	0.00092	0.650					
8		185.53	0.00	0.00	54.51	0.00	999.999	7.47	9.75	0.00092	0.650					
9	2 U2	228.94	0.00	3.72	-0.00	48.55	13.069	8.93	9.75	0.00028	0.650					
10		228.94	0.00	0.00	48.55	0.00	999.999	8.93	9.75	0.00028	0.650					
11	2 U3	215.35	0.00	2.98	-0.00	50.72	17.019	8.46	9.75	0.00046	0.650					
12		215.35	0.00	0.00	50.72	0.00	999.999	8.46	9.75	0.00046	0.650					

Final Report

Column 13H

Page 1 02/06/14 04:30 PM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 E:\SPRING\Gravity\Column Design\Frame 13\13H.col

> 00 00 00 0 0000000000 0 00000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 (TM) 00000 0

spColumn v4.81 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright © 1988-2012, STRUCTUREPOINT, LLC. All rights reserved

Page 2 02/06/14 04:30 PM

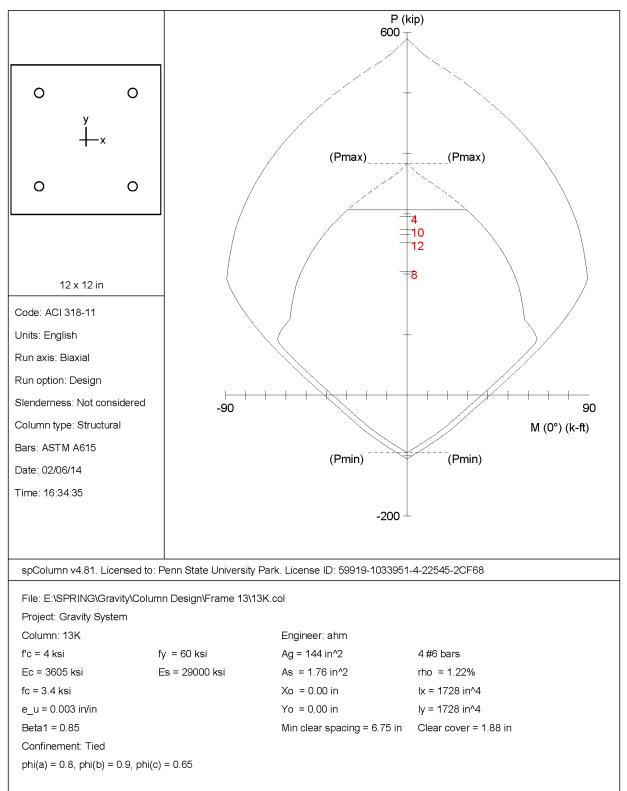
	ravity\Colum			k. License II 13\13H.col	9: 59919-1033	3951-4-22545-	2CF68
General Inf							
Project: Column:	Gravity Sys		Column 1	Design\Frame Engineer Units: B	: ahm		
Run Optio	n: Design			Slenderr	less: Not con		
	Biaxial			Column T	'ype: Structu	ıral	
Material Pr							
	605 ksi strain = 0.0	03 in/i	n	fy = 6 Es = 2	0 ksi 9000 ksi		
Section:							
Rectangul	ar: Width =	12 in		Depth =	12 in		
Gross sec Ix = 172 rx = 3.4 Xo = 0 i	641 in	g = 14·	4 in^2	Iy = 17 ry = 3. Yo = 0	4641 in		
Reinforceme							
Bar Set:	ASTM A615	in^2)	Size Dia	am (in) Area	(in^2) Siz	e Diam (in)	Area (in^2)
# 3	0.38	0.11	# 4	0.50	0.20 #	5 0.63	0.31
# 6 # 9 # 14	0.75 1.13 1.69	0.44 1.00 2.25	# 7 # 10 # 18	0.50 0.88 1.27 2.26	0.60 # 1.27 # 1 4.00	8 1.00 1 1.41	0.79 1.56
Bar selec	tion: Minimu	m numbe	r of bar:				
Confineme phi(a) =				pars, #4 wit	h larger bar		
	0.0, pur(%)	= 0.9,	T (-)	= 0.65			
Pattern: Total ste	ectangular	acing = 1.76 :	(Cover to in^2 at :	= 0.65 o transverse rho = 1.22%	reinforcemen		
Pattern: Total ste Minimum c	ectangular Equal Bar Sp el area: As	acing = 1.76 :	(Cover to in^2 at :		reinforcemen		
Pattern: Total ste Minimum c 4 #6 Co Service Loa	ectangular Equal Bar Sp el area: As lear spacing ver = 1.5 in ds:	acing = 1.76 :	(Cover to in^2 at :		reinforcemer		
Pattern: Total ste Minimum c 4 #6 Co Service Loa Load No. Case	ectangular Equal Bar Sp el area: As lear spacing ver = 1.5 in ds: === Axial Load kip	acing = 1.76 = 6.75	(Cover t in^2 at : in @ Top k-ft	b transverse rho = 1.22% Mx @ Bot k-ft	My @ Top k-ft	nt) My @ Bot k−ft	
Pattern: Total ste Minimum c 4 #6 Co Service Loa Load No. Case	ectangular Equal Bar Sp el area: As lear spacing ver = 1.5 in ds: === Axial Load kip	acing = 1.76 = 6.75	(Cover t in^2 at : in @ Top k-ft	b transverse rho = 1.22% Mx @ Bot k-ft	My @ Top k-ft	nt) My @ Bot k−ft	
Pattern: Total ste Minimum c 4 #6 Co Service Loa Load No. Case	ectangular Equal Bar Sp el area: As lear spacing ver = 1.5 in ds: === Axial Load kip	acing = 1.76 = 6.75	(Cover t in^2 at : in @ Top k-ft	b transverse rho = 1.22% Mx @ Bot k-ft	My @ Top k-ft	nt) My @ Bot k−ft	
Pattern: Total ste Minimum c 4 #6 Co Service Loa Load No. Case	ectangular Equal Bar Sp el area: As lear spacing ver = 1.5 in ds: === Axial Load kip	acing = 1.76 = 6.75	(Cover t in^2 at : in @ Top k-ft	b transverse rho = 1.22% Mx @ Bot k-ft	My @ Top k-ft	nt) My @ Bot k−ft	
Pattern: Total ste Minimum c 4 #6 Co Service Loa Load No. Case	ectangular Equal Bar Sp el area: As lear spacing ver = 1.5 in ds: === Axial Load kip	acing = 1.76 = 6.75	(Cover t in^2 at : in @ Top k-ft	b transverse rho = 1.22% Mx @ Bot k-ft	My @ Top k-ft	nt) My @ Bot k−ft	
Pattern: Total ste Minimum c 4 #6 Co Service Loa Load No. Case	ectangular Equal Bar Sp el area: As lear spacing ver = 1.5 in ds: === Axial Load kip	acing = 1.76 = 6.75	(Cover t in^2 at : in @ Top k-ft	b transverse rho = 1.22% Mx @ Bot k-ft	My @ Top k-ft	nt) My @ Bot k−ft	
Pattern: Total ste Minimum c 4 #6 Co Service Loa Load No. Case	ectangular Equal Bar Sp el area: As lear spacing ver = 1.5 in ds: === Axial Load kip	acing = 1.76 = 6.75	(Cover t in^2 at : in @ Top k-ft	b transverse rho = 1.22% Mx @ Bot k-ft	My @ Top k-ft	nt) My @ Bot k−ft	
Pattern: Total ste Minimum c 4 #6 Co Service Loa Load No. Case	ectangular Equal Bar Sp el area: As lear spacing ver = 1.5 in ds: === Axial Load kip	acing = 1.76 = 6.75	(Cover t in^2 at : in @ Top k-ft	o transverse rho = 1.22% Mx @ Bot k-ft	My @ Top k-ft	nt) My @ Bot k−ft	
Pattern: Total ste Minimum c 4 #6 Co Service Loa No. Case Load No. Case Load Live Wind EQ Snow 2 Dead Live Wind EQ Snow Sustained L	ectangular Equal Bar Sp el area: As lear spacing ver = 1.5 in ds: 	acing = 1.76 = 6.75	(Cover t: in^2 at : in %-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Mx @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	My @ Top k-ft 	My @ Bot k-ft 	
Pattern: Total ste Minimum c 4 #6 Co Service Load No. Case Load No. Case Load Live Wind EQ Snow 2 Dead Live Wind EQ Snow 2 Dead Live Wind EQ Snow 2 Dead Live Wind EQ Snow	ectangular Equal Bar Sp el area: As lear spacing ver = 1.5 in ds: === Axial Load kip 100.85 53.76 0.00 0.00 8.77 100.85 34.54 0.00 0.00 8.77 oad Factors: ====== Factor: (%)	acing = 1.76 = 6.75	(Cover t: in^2 at : in %-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Mx @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	My @ Top k-ft 	My @ Bot k-ft 	
Pattern: Total ste Minimum c 4 #6 Co Service Load No. Case Load No. Case Load Live Wind EQ Snow 2 Dead Live Wind EQ Snow 2 Dead Live Wind EQ Snow 2 Dead Live Wind EQ Snow	ectangular Equal Bar Sp el area: As lear spacing ver = 1.5 in ds: === Axial Load kip 100.85 53.76 0.00 0.00 8.77 100.85 34.54 0.00 0.00 8.77 oad Factors: === Factor	acing = 1.76 = 6.75	(Cover t: in^2 at : in %-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Mx @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	My @ Top k-ft 	My @ Bot k-ft 	
Pattern: Total ste Minimum c 4 #6 Co Service Load No. Case Load Live Wind EQ Snow 2 Dead Live Wind EQ Snow 2 Dead Live Wind EQ Snow 2 Dead Live Wind EQ Snow	ectangular Equal Bar Sp el area: As lear spacing ver = 1.5 in ds: === Axial Load kip 100.85 53.76 0.00 0.00 8.77 100.85 34.54 0.00 0.00 8.77 coad Factors: ========== Factor (%) 100 0	acing = 1.76 = 6.75	(Cover t: in^2 at : in %-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Mx @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	My @ Top k-ft 	My @ Bot k-ft 	
Pattern: Total ste Minimum c 4 #6 Co Service Loa Load No. Case 	ectangular Equal Bar Sp el area: As lear spacing ver = 1.5 in ds: Axial Load Axial Load Axial Load bar 100.85 53.76 0.00 0.00 8.77 100.85 34.54 0.00 0.00 8.77 oad Factors: Factor (%)	acing = 1.76 = 6.75	(Cover t: in^2 at : in %-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Mx @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	My @ Top k-ft 	My @ Bot k-ft 	
Pattern: Total ste Minimum c 4 #6 Co Service Load No. Case Load Live Wind EQ Snow 2 Dead Live Wind EQ Snow 2 Dead Live Wind EQ Snow 2 Dead Live Wind EQ Snow	ectangular Equal Bar Sp el area: As lear spacing ver = 1.5 in ds: === Axial Load kip 100.85 34.54 0.00 0.00 8.77 100.85 34.54 0.00 0.00 8.77 coad Factors== Factor (%) 0 0	acing = 1.76 = 6.75	(Cover t: in^2 at : in %-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Mx @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	My @ Top k-ft 	My @ Bot k-ft 	

Load Combinations:

U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake + 0.000*Snow U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake + 0.500*Snow STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 E:\SPRING\Gravity\Column Design\Frame 13\13H.col

Page 3 02/06/14 04:30 PM

U3 = 1.200*Dead + 1.000*Live + 0.000*Wind + 0.000*EarthQuake + 1.600*Snow


Factored Loads and Moments with Corresponding Capacities:

Design/Required ratio PhiMn/Mu >= 1.00 NOTE: Each loading combination includes the following cases: First line - at column top Second line - at column bottom Load

	Load	Pu	Mux	Muy	PhiMnx		PhiMn/Mu	NA depth I	÷ .	eps_t	Phi
No.	Combo	kip	k-ft	k-ft	k-ft	k-ft		in	in		
1	1 U1	141.19	0.00	-2.31	0.00	-57.39	24.843	6.21	9.75	0.00171	0.650
2		141.19	0.00	0.00	57.39	0.00	999.999	6.21	9.75	0.00171	0.650
3	1 U2	211.42	0.00	-3.10	0.00	-51.29	16.523	8.32	9.75	0.00051	0.650
4		211.42	0.00	0.00	51.29	0.00	999.999	8.32	9.75	0.00051	0.650
5	1 U3	188.81	0.00	-2.94	0.00	-54.15	18.419	7.57	9.75	0.00086	0.650
6		188.81	0.00	0.00	54.15	0.00	999.999	7.57	9.75	0.00086	0.650
7	2 U1	141.19	0.00	-2.31	0.00	-57.39	24.843	6.21	9.75	0.00171	0.650
8		141.19	0.00	0.00	57.39	0.00	999.999	6.21	9.75	0.00171	0.650
9	2 U2	180.67	0.00	-4.86	0.00	-55.03	11.313	7.31	9.75	0.00100	0.650
10		180.67	0.00	0.00	55.03	0.00	999.999	7.31	9.75	0.00100	0.650
11	2 U3	169.59	0.00	-4.04	0.00	-55.86	13.827	6.99	9.75	0.00119	0.650
12		169.59	0.00	0.00	55.86	0.00	999.999	6.99	9.75	0.00119	0.650

Final Report

Column 13K

Page 1 02/06/14 04:34 PM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 E:\SPRING\Gravity\Column Design\Frame 13\13K.col

				000	000			0								
				00	00			00								
00	000	0000	000	00		00	000	00	00	00	0 00	00000	000	0 000	000	
00	0	00	00	00		00	00	00	00	00	00	00	00	00	00	
00		00	00	00		00	00	00	00	00	00	00	00	00	00	
00	000	00	00	00		00	00	00	00	00	00	00	00	00	00	
	00	0000	000	00		00	00	00	00	00	00	00	00	00	00	
0	00	00		00	00	00	00	00 0	00	00	00	00	00	00	00	
00	000	00		000	000	00	000	000	00	0 000	00	00	00	00	00	(TM)

SpColumn v4.81 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright © 1988-2012, STRUCTUREPOINT, LLC. All rights reserved

Page 2 02/06/14 04:34 PM

STRUCTUREPOINT - spColumn v4 Licensed to: Penn State Univ E:\SPRING\Gravity\Column Des	ersity Park.		59919-103395	1-4-22545-2CF6	8
General Information:					
File Name: E:\SPRING\Gravi Project: Gravity System	ty\Column De	sign\Frame 13	3\13K.col		
Column: 13K Code: ACI 318-11		Engineer: Units: Eng			
Run Option: Design Run Axis: Biaxial			ss: Not consi be: Structura		
Material Properties:					
f'c = 4 ksi Ec = 3605 ksi Ultimate strain = 0.003 in Betal = 0.85	/in	fy = 60 Es = 290	ksi 000 ksi		
Section:					
Rectangular: Width = 12 in		Depth = 12	2 in		
Gross section area, Ag = Ix = 1728 in^4 rx = 3.4641 in Xo = 0 in	144 in^2	Iy = 1728 ry = 3.49 Yo = 0 in	541 in		
Reinforcement:					
Bar Set: ASTM A615 Size Diam (in) Area (in^2)	Size Diam	(in) Area (:	in^2) Size	Diam (in) Area	(in^2)
# 3 0.38 0.11 # 6 0.75 0.44 # 9 1.13 1.00 # 14 1.69 2.25	# 4 # 7 # 10 # 18	0.50 0.88 1.27 2.26	0.20 # 5 0.60 # 8 1.27 # 11 4.00	0.63 1.00 1.41	0.31 0.79 1.56
Bar selection: Minimum num Asmin = 0.01 * Ag = 1.44 i:	ber of bars				
Confinement: Tied; #3 ties phi(a) = 0.8, phi(b) = 0.			larger bars.		
Layout: Rectangular Pattern: Equal Bar Spacing Total steel area: As = 1.7 Minimum clear spacing = 6.	6 in^2 at rh	transverse re o = 1.22%	einforcement)		
4 #6 Cover = 1.5 in					
Service Loads:					
Load Axial Load : No. Case kip					
1 Dead 145.64 Live 71.75 Wind 0.00 EQ 0.00 Snow 11.98 2 Dead 145.64 Live 57.91 Wind 0.00 FO 0.00	0.00 0.00	0.00 0.00	3.05 1.89	0.00 0.00	
Wind 0.00 EQ 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	
Snow 11.98 2 Dead 145.64	0.00 0.00	0.00 0.00	0.30 3.05	0.00 0.00	
Live 57.91 Wind 0.00	0.00 0.00	0.00 0.00	2.60 0.00	0.00 0.00	
EQ 0.00 Snow 11.98	0.00	0.00 0.00	0.00 0.30	0.00	
Sustained Load Factors:					
Load Factor Case (%)					
Dead 100 Live 0					
Wind 0 EQ 0 Snow 0					

Load Combinations:

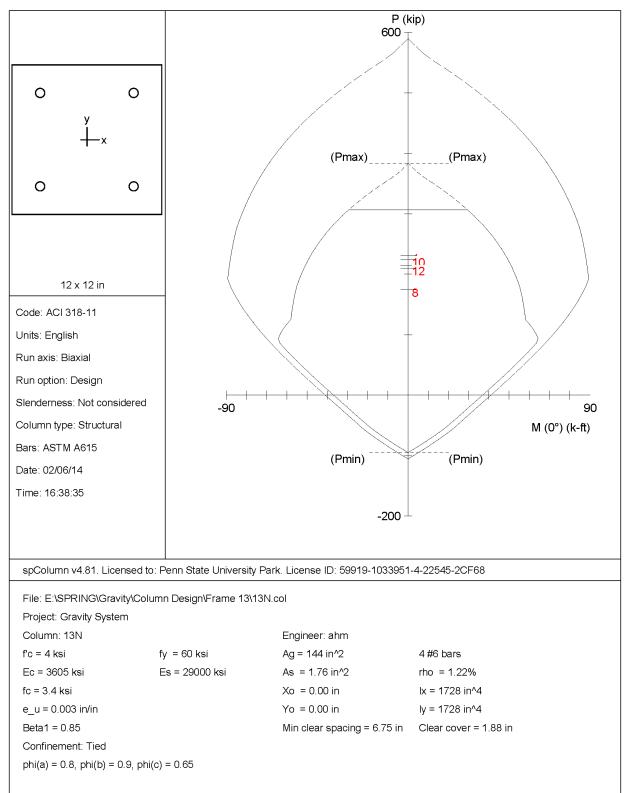
U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake + 0.000*Snow U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake + 0.500*Snow

Peggy Ryan Williams Center Page 135

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 E:\SPRING\Gravity\Column Design\Frame 13\13K.col

Page 3 02/06/14 04:34 PM

U3 = 1.200*Dead + 1.000*Live + 0.000*Wind + 0.000*EarthQuake + 1.600*Snow


Factored Loads and Moments with Corresponding Capacities:

Design/Required ratio PhiMn/Mu >= 1.00 NOTE: Each loading combination includes the following cases: First line - at column top Second line - at column bottom

		a iine - ac c									
	Load	Pu	Mux	Muy	PhiMnx	PhiMny	PhiMn/Mu	NA depth	Dt depth	eps t	Phi
No.	Combo	kip	k-ft	k-ft	k-ft	k-ft		in	in	_	
1	1 U1	203.90	0.00	4.27	-0.00	52.32	12.253	8.07	9.75	0.00062	0.650
2		203.90	0.00	0.00	52.32	0.00	999.999	8.07	9.75	0.00062	0.650
3	1 U2	295.56	0.00	6.83	-0.00	32.89	4.813	11.36	9.75	-0.00043	0.650
4		295.56	0.00	0.00	32.89	0.00	999.999	11.36	9.75	-0.00043	0.650
5	1 U3	265.69	0.00	6.03	-0.00	41.05	6.807	10.24	9.75	-0.00014	0.650
6		265.69	0.00	0.00	41.05	0.00	999.999	10.24	9.75	-0.00014	0.650
7	2 U1	203.90	0.00	4.27	-0.00	52.32	12.253	8.07		0.00062	0.650
8		203.90	0.00	0.00	52.32	0.00	999.999	8.07	9.75	0.00062	0.650
9	2 U2	273.41	0.00	7.97	-0.00	39.13	4.909	10.53	9.75	-0.00022	0.650
10		273.41	0.00	0.00	39.13	0.00	999.999	10.53	9.75	-0.00022	0.650
11	2 U3	251.85	0.00	6.74	-0.00	44.18	6.555	9.74	9.75	0.00000	0.650
12		251.85	0.00	0.00	44.18	0.00	999.999	9.74	9.75	0.00000	0.650

Final Report

Column 13N

Page 1 02/06/14 04:37 PM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 E:\SPRING\Gravity\Column Design\Frame 13\13N.col

> 00 00 00 0 0000000000 0 00000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 (TM) 00000 0

spColumn v4.81 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright © 1988-2012, STRUCTUREPOINT, LLC. All rights reserved

Page 2 02/06/14 04:37 PM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 E:\SPRING\Gravity\Column Design\Frame 13\13N.col	
General Information:	
File Name: E:\SPRING\Gravity\Column Design\Frame 13\13N.col Project: Gravity System Column: 13N Engineer: ahm	
Code: ACI 318-11 Units: English	
Run Option: Design Slenderness: Not considered Run Axis: Biaxial Column Type: Structural	
Material Properties:	
f'c = 4 ksi fy = 60 ksi Ec = 3605 ksi Es = 29000 ksi Ultimate strain = 0.003 in/in Betal = 0.85	
Section:	
Rectangular: Width = 12 in Depth = 12 in	
Gross section area, Ag = 144 in^2 Ix = 1728 in^4 Iy = 1728 in^4 rx = 3.4641 in ry = 3.4641 in Xo = 0 in Yo = 0 in	
Reinforcement:	
Bar Set: ASTM A615 Size Diam (in) Area (in^2) Size Diam (in) Area (in^2) Size Diam (in) Area (i	
# 3 0.38 0.11 # 4 0.50 0.20 # 5 0.63	0.31
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.79 1.56
Bar selection: Minimum number of bars Asmin = 0.01 * Ag = 1.44 in^2, Asmax = 0.08 * Ag = 11.52 in^2	
Confinement: Tied; #3 ties with #10 bars, #4 with larger bars. $phi(a) = 0.8$, $phi(b) = 0.9$, $phi(c) = 0.65$	
Layout: Rectangular Pattern: Equal Bar Spacing (Cover to transverse reinforcement) Total steel area: As = 1.76 in^2 at rho = 1.22% Minimum clear spacing = 6.75 in	
4 #6 Cover = 1.5 in	
Service Loads:	
Load Axial Load Mx @ Top Mx @ Bot My @ Top My @ Bot No. Case kip k-ft k-ft k-ft k-ft	
1 Dead 124.43 0.00 0.00 -5.74 0.00 Live 48.01 0.00 0.00 -4.04 0.00 Wind 0.00 0.00 0.00 0.00 0.00 EQ 0.00 0.00 0.00 0.00 0.00 Snow 10.46 0.00 0.00 -5.74 0.00 2 Dead 124.43 0.00 0.00 -0.55 0.00 2 Dead 124.43 0.00 0.00 -5.74 0.00 Live 43.79 0.00 0.00 -0.00 -4.41 0.00 Wind 0.00 0.00 0.00 0.00 0.00 0.00 EQ 0.00 0.00 0.00 0.00 0.00 0.00	
Wind 0.00 0.00 0.00 0.00 0.00 EQ 0.00 0.00 0.00 0.00 0.00	
Snow 10.46 0.00 0.00 -0.55 0.00 Sustained Load Factors:	
Load Factor	
Load Factor Case (%)	
Load Factor Case (%)	

U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake + 0.000*Snow U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake + 0.500*Snow STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 E:\SPRING\Gravity\Column Design\Frame 13\13N.col

Page 3 02/06/14 04:37 PM

U3 = 1.200*Dead + 1.000*Live + 0.000*Wind + 0.000*EarthQuake + 1.600*Snow

Factored Loads and Moments with Corresponding Capacities:

Design/Required ratio PhiMn/Mu >= 1.00 NOTE: Each loading combination includes the following cases: First line - at column top Second line - at column bottom Load

	Load	Pu	Mux	Muv	PhiMnx	PhiMnv	PhiMn/Mu	NA depth	Dt depth	eps t	Phi
No.	Combo	kip	k-ft	k-ft	k-ft	k-ft		in acpen	in	opb_c	1 11 1
1	1 U1	174.20	0.00	-8.04	0.00	-55.55	6.913	7.12	9.75	0.00111	0.650
2		174.20	0.00	0.00	55.55	0.00	999.999	7.12	9.75	0.00111	0.650
3	1 U2	231.36	0.00	-13.63	0.00	-48.13	3.532	9.01	9.75	0.00025	0.650
4		231.36	0.00	0.00	48.13	0.00	999.999	9.01	9.75	0.00025	0.650
-	1 U3	214.06	0.00	-11.81	0.00	-50.91	4.311	8.41	9.75	0.00048	0.650
6		214.06	0.00	0.00	50.91	0.00	999.999	8.41	9.75	0.00048	0.650
	2 U1	174.20	0.00	-8.04	0.00	-55.55	6.913	7.12	9.75	0.00111	0.650
8		174.20	0.00	0.00	55.55	0.00	999.999	7.12	9.75	0.00111	0.650
-	2 U2	224.61	0.00	-14.22	0.00	-49.27	3.465	8.78	9.75	0.00033	0.650
10		224.61	0.00	0.00	49.27	0.00	999.999	8.78	9.75	0.00033	0.650
	2 U3	209.84	0.00	-12.18	0.00	-51.51	4.230	8.27	9.75	0.00054	0.650
12		209.84	0.00	0.00	51.51	0.00	999.999	8.27	9.75	0.00054	0.650

Appendix B.1: Lateral Load Calculations

Seismic Loads

Seismic Design Values

§ 11.1.2 -selsmic design is required Site Class: B using usgs.gov: $5s=0.124g$ $5i=0.0540g$ 5me=0.124g $5mi=0.0540g5os=0.083$ $5oi=0.037gT_{L}=4 secondsTable 11.40-15os=0.083 < 0.167 \Rightarrow 5DC ATable .11.40-25oi=0.037 < 0.047 \Rightarrow 5DC A$							
Ste Class: B Using USQ5.gov: $S_{5}=0.1949$ $S_{1}=0.0549$ $S_{M6}=0.1849$ $S_{M1}=0.0549$ $S_{D5}=0.083$ $S_{D1}=0.0379$ $T_{L}=4$ seconds Table 11.40-1 $S_{D5}=0.083 < 0.167 \Rightarrow SDC A$ Table .11.40-2 $S_{D1}=0.037 < 0.047 \Rightarrow SDC A$							
$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Sos = 0.083 Sol = 0.037g $T_{L} = U \text{ seconds}$ Table 11.6-1 Sos = 0.083 < 0.167 \rightarrow SDC A Table .11.6-2 Sol = 0.037 < 0.067 \rightarrow SDC A							
Ti=U seconds Table 11.6-1 $505 = 0.083 < 0.167 \rightarrow SDC A$ Table .11.6-2 $501 = 0.037 < 0.007 \rightarrow SDC A$							
Table 11.6-1 $505 = 0.083 < 0.167 \rightarrow 5DC A$ Table .11.6-2 $501 = 0.037 < 0.007 \rightarrow 5DC A$							
$505 = 0.083 < 0.167 \rightarrow 5DC A$ Table . 11.6-2 $501 = 0.037 < 0.067 \rightarrow 5DC A$							
Table . 11-6-2 Sol = 0.037 < 0.067 \rightarrow SDC A							
So1=0.037 < 0.007 → 500 A							
> \$ 11.7 Design Requirements for seismic design category A pg. 68							
> according to \$ 1.4.3 Lateral Forces							
$F_x = 0.01 \text{ W}_x (\text{equation } 1.4-1)$							

Determination of Building Weight

Total land	10100 1000	è.			4414				2006	0607				2002				2024	
Exterior	Wall Load	(K)	193					133.8				169.3				96.4			
	Column	Load (k)	5.4	58.0	40.8	17.8	8.0	9.5	32.0	54.4	17.8	2.0	39.0	76.3	21.7	23.0	31.3	12.8	
	Column	Length (ft)	6.67	13.33	13.33	13.33	13.33	6.67	13.33	13.33	13.33	9.58	16.25	16.25	16.25	9.58	9.58	9.58	
Column Loads	Column	Depth (in)	14	12	14	16	24	14	12	14	16	14	12	14	16	12	14	16	
3	Column	Width (in)	14	12	14	16	24	14	12	14	16	14	12	14	16	12	14	16	
	Column Qty	Per Size	4	52	15	ы	1	7	16	20	5	1	16	23	ъ	16	16	5	
		(k)	85.8	77.8				37.1	98.8			46.2				29.9			
Beam Loads	Beam Depth Beam Load	(in)	24.5	24.5				24.5	24.5			24.5				24.5			
Beam	Beam	Length (ft)	105.0	254.0				121	129			151				97.6			
	Beam Width	(in)	32.0	12.0				12	30			12				12			
	Girder Load	(K)	16.7	306.3	218.1			17.0	270.3	121.8		17.0	269.0	128.5		19.9	246.5	145.0	
Girder Loads	Girder	Depth (in)	24.5	24.5	24.5			24.5	24.5	24.5		24.5	24.5	24.5		24.5	24.5	24.5	
Girde	Girder	Length (ft)	54.7	400	356			55.67	353	198.9		55.67	351.3	209.8		59	322	236.7	
	Girder	Width (in)	12	œ	24			12	8	24		12	30	24		12	90	24	
Joist Load	Inichs (b)	(v) ereine	887.9					631.2				628.3				662.5			
sior	Inicte (nef)	(ied) eleine	41.7					41.7				41.7				41.7			
Slab Load	CI-4-11		1197.7					851.4				847.5				893.6			
Slat	Clab (acf)	(isof) maic	56.25					56.25				56.25				56.25			
Partition Load	Dottions (b		278.5					302.7				253.5				0			
Partiti	Partitions	(psf)	20					20				20				0			
Misc Dead Load	Misc Dead	(K)	292.4	729.5				317.9				266.1	237.0			492.5			
Misc D.	r MiscDead	(psf)	21	66				21				21	66			31	_		
	Indoor Floo	Area (sf)	13923					15136				12673				0			
Floor Area	otal Floor Green Roof Indoor Floor Misc Dead Misc Dead	Area (sf)	7369					0				2394	_		_	0			
	Total Floor	Area (sf)	21292					15136				15067				15887			
				τı	ləv	PT		1	z lə	vəl		1	E I9	və			ło	оя	

Seismic Load Calculations

		Floor Area					Loads	ids					
	Total Floor Area (sf)	Total Floor Green Roof Indoor Floo Area (sf) Area (sf) Area (sf)	Indoor Floor Area (sf)	Misc Dead (k)	Partitions (k)	Slab (k)	Joists (k)	Girder Load (k)	Beam Load (k)	Column Load (k)	Exterior Wall Load (k)	Total Load, W _× (k)	Force at Level, Fx (k)
Level 1	21292	7369	13923	1021.9	278.5	1197.7	887.9	541.0	163.5	130.0	193	4414	45
Level 2	15136	0	15136	317.9	302.7	851.4	631.2	409.1	135.8	113.7	133.8	3 896	29
Level 3	15067	2394	12673	503.1	253.5	847.5	628.3	414.5	46.2	138.9	169.3	200E	31
Roof	15887	0	0	492.5	0.0	893.6	662.5	411.4	29.9	67.1	96.4	7654	27

 $F_{x} = 0.01 W_{x}$

Seismic Load Base Shear	sase Shear		
	Force (k)	Story Shear (k)	Overturning Moment (ft-k)
Level 1	45.0	132.0	599.9
Level 2	29.0	87.0	773.5
Level 3	31.0	58.0	1240
Roof	27.0	27.0	1869.8
Total	132.0		4483.2

Wind Loads

Wind Design Values

Wind Load Calculations Per ASCE7-10

*Using MWFRS Procedule

Risk Category		Ш	
Basic Wind Speed	V	120	mph
Wind Directionality Factor	K _d	0.85	
Exposure Category		В	
Topographic Factor	K _{zt}	1.0	
Rigid Structure			
n _a = 43.5/(h^0.9)		1.0	Hz
Gust Effect Factor	G	0.85	(conservative)
Internal Pressure Coefficient	GC_{pi}	0.18	
		-0.18	

Determining K_z and q_z										
	Height above ground, z (ft)	Zg	α	K _z	q _z	q _h				
Garden Level	0	1200	7.0	0.57	17.86	27.88				
Level 1	13.33	1200	7.0	0.57	17.86	27.88				
Level 2	26.67	1200	7.0	0.68	21.23	27.88				
Level 3	40.00	1200	7.0	0.76	23.83	27.88				
Roof	69.25	1200	7.0	0.89	27.88	27.88				

Equations Used:	
$p = qGC_p - q_i(GC_{pi})$	(psf)
Force = p*Area	(k)

North-South Direction

Windward Wall	C _p =	0.80	L =	110	ft
Leeward Wall	C _p =	-0.50	B =	229	ft
			L/B =	0.48	

		~	G	C	~	<u> </u>	n (nof)	Area (of)	
		q	G	Cp	q _i	GC _{pi}	p (psf)	Area (sf)	Force (k)
D	Garden Level	17.86	0.85	0.80	-	-	12.15	1527.4	18.6
'AR	Level 1	17.86	0.85	0.80	-	-	12.15	3052.6	37.1
DV	Level 2	21.23	0.85	0.80	-	-	14.43	3052.6	44.1
WINDWARD	Level 3	23.83	0.85	0.80	-	-	16.21	4875.4	79.0
>	Roof	27.88	0.85	0.80	27.88	-0.18	23.98	3349.1	80.3
	Garden Level	27.88	0.85	-0.50	-	-	-11.85	1527.4	-18.1
,RD	Level 1	27.88	0.85	-0.50	-	-	-11.85	3052.6	-36.2
-EEWARD	Level 2	27.88	0.85	-0.50	-	-	-11.85	3052.6	-36.2
LEE	Level 3	27.88	0.85	-0.50	-	-	-11.85	4875.4	-57.8
	Roof	27.88	0.85	-0.50	27.88	0.18	-16.87	3349.1	-56.5

Wind Load Base Shear & Overturning Moment									
	Force (k)	Story Shear (k)	Overturning Moment (ft-k)						
Garden Level	36.6	463.7	0.0						
Level 1	73.2	427.0	976.4						
Level 2	80.2	353.8	2139.8						
Level 3	136.8	273.6	5471.3						
Roof	136.8	136.8	9472.8						
Total	463.7		18060.3						

East-West Direction

Windward Wall	C _p =	0.80	L =	229	ft
Leeward Wall	C _p =	-0.30	B =	110	ft
			L/B =	2.08	

		q	G	Cp	q _i	GC _{pi}	p (psf)	Area (sf)	Force (k)
D	Garden Level	17.86	0.85	0.80	-	-	12.15	733.7	8.9
/AR	Level 1	17.86	0.85	0.80	-	-	12.15	1466.3	17.8
DV	Level 2	21.23	0.85	0.80	-	-	14.43	1466.3	21.2
WINDWARD	Level 3	23.83	0.85	0.80	-	-	16.21	2341.9	38.0
>	Roof	27.88	0.85	0.80	27.88	-0.18	23.98	1608.8	38.6
	Garden Level	27.88	0.85	-0.30	-	-	-7.01	733.7	-5.1
RD	Level 1	27.88	0.85	-0.30	-	-	-7.01	1466.3	-10.3
.EEWARD	Level 2	27.88	0.85	-0.30	-	-	-7.01	1466.3	-10.3
LEE	Level 3	27.88	0.85	-0.30	-	-	-7.01	2341.9	-16.4
	Roof	27.88	0.85	-0.30	27.88	0.18	-12.03	1608.8	-19.4

Wind Load Base She	Wind Load Base Shear & Overturning Moment										
	Force (k)	Story Shear (k)	Overturning Moment (ft-k)								
Garden Level	14.1	185.9	0.0								
Level 1	28.1	171.9	374.5								
Level 2	31.5	143.8	838.8								
Level 3	54.4	112.3	2175.3								
Roof	57.9	57.9	4011.7								
Total	185.9		7400.3								

Structural

T.

Appendix B.2: Determination of Frame Stiffness's

Determination of Stiffness									
		In-Plane							
	Frame	P (k)	∆(in)	$k = P/\Delta$					
	Tranic			(k/in)					
	6	10	0.03	333.33					
North- South	8	10	0.031	322.58					
Sol	10	10	0.017	588.24					
	13	10	0.017	588.24					
st	D	10	0.042	238.10					
Ne Ne	Е	10	0.039	256.41					
East-West	G	10	0.042	238.10					
Ë	К	10	0.041	243.90					

Appendix B.3: Center of Mass and Center of Rigidity

Center of Mass

	Weight (nef)			Cente	er of Mass					
	Weight (pcf) [or psf if no thickness]	Thickness (ft)	Width (ft)	Length (ft)	Area (sf)	Weight (k)	Dist in X-dirn from (0,0) (ft)		Weight*Dx	Weight*
lab	150.0	0.4	-	-	1863.4	104.8	10.1	70.9	1056.9	7428.
	150.0	0.4	-	-	1651.9	92.9	42.2	63.0	3918.0	5849.8
	150.0	0.4	-	-	7692.2	432.7	101.3	47.4	43845.6	20516.
	150.0	0.4	-	-	9951.8	559.8	189.5	55.8	106080.0	31231.
ab Openings	150.0	0.4	-	-	-70.0	-3.9	50.3	59.3	-197.9	-233.7
	150.0	0.4	-	-	-134.3	-7.6	74.2	53.4	-560.6	-403.0
	150.0 150.0	0.4	-	-	-67.8	-3.8	94.0 158.5	48.7 96.7	-358.7 -3458.2	-185.
	150.0	0.4		-	-387.9 -406.9	-21.8 -22.9	158.5	54.2	-3438.2	-2109. -1240.
	150.0	0.4	-	-	-69.8	-3.9	188.2	18.5	-739.2	-72.7
	150.0	0.4	-	-	-65.1	-3.7	218.3	13.2	-798.6	-48.3
ists	41.7	-	-	-	1863.4	77.7	10.1	70.9	783.5	5507
	41.7	-	-	-	1651.9	68.9	42.2	63.0	2904.5	4336
	41.7	-	-	-	7692.2	320.8	101.3	47.4	32504.2	15209
	41.7	-	-	-	9951.8	415.0	189.5	55.8	78640.6	23153
ist Openings	41.7	-	-	-	-70.0	-2.9	50.3	59.3	-146.7	-173
	41.7	-	-	-	-134.3	-5.6	74.2	53.4	-415.6	-299
	41.7	-	-	-	-67.8	-2.8	94.0	48.7	-265.9	-137
	41.7	-	-	-	-387.9	-16.2	158.5	96.7	-2563.7	-1564
	41.7 41.7	-	-	_	-406.9 -69.8	-17.0 -2.9	158.5 188.2	54.2 18.5	-2689.6 -548.0	-919 -53.
	41.7	-	-	-	-65.1	-2.9	218.3	13.2	-592.0	-35.
lumns	150.0	1.5	1.5	6.7	10.0	2.2	1.1	95.8	2.4	215.
	150.0	1.5	1.5	6.7	10.0	2.2	1.1	83.3	2.4	187.
	150.0	1.5	1.5	6.7	10.0	2.2	1.1	55.3	2.4	124.
	150.0	1.5	1.5	13.3	20.0	4.5	6.0	94.4	27.0	424.
	150.0	1.5	1.5	13.3	20.0	4.5	6.0	81.8	27.0	367.
	150.0	1.5	1.5	13.3	20.0	4.5	6.0	54	27.0	242.
	150.0	1.5	1.5	13.3	20.0	4.5	38.3	86.3	172.4	388.
	150.0	1.5	1.5	13.3	20.0	4.5	33.8	68.3	152.2	307.
	150.0	1.5	1.5	13.3	20.0	4.5	28.8	48.3	129.7	217. 94.:
	150.0 150.0	1.5 1.5	1.5 1.5	6.7 13.3	10.0 20.0	2.2 4.5	27.3 71.8	41.8 91.2	61.3 323.2	94. 410.
	150.0	1.5	1.5	13.3	20.0	4.5	68.8	78.8	309.3	354.
	150.0	1.5	1.5	13.3	20.0	4.5	64.3	60.8	289.1	273.
	150.0	1.5	1.5	13.3	20.0	4.5	57.3	33.4	257.9	150.
	150.0	1.5	1.5	13.3	20.0	4.5	57.7	22.3	259.5	100.
	150.0	1.5	1.5	13.3	20.0	4.5	49.9	22.3	224.6	100.
	150.0	1.5	1.5	13.3	20.0	4.5	101.7	95.4	457.4	429.
	150.0	1.5	1.5	13.3	20.0	4.5	95.8	72.0	431.1	323.
	150.0	1.5	1.5	13.3	20.0	4.5	91.3	54.0	410.9	242.
	150.0	1.5	1.5	13.3	20.0	4.5	84.4	26.7	379.8	120.
	150.0	1.5	1.5	13.3	20.0	4.5	84.5	1.0	380.2 584.9	4.5 447.
	150.0 150.0	1.5 1.5	1.5 1.5	13.3 13.3	20.0 20.0	4.5 4.5	130.0 121.5	99.4 65.5	546.6	294.
	150.0	1.5	1.5	13.3	20.0	4.5	117.0	47.5	526.4	213.
	150.0	1.5	1.5	13.3	20.0	4.5	110.1	20.3	495.3	91.
	150.0	1.5	1.5	13.3	20.0	4.5	110.2	1.0	495.6	4.5
	150.0	1.5	1.5	13.3	20.0	4.5	142.0	60.5	638.8	272.
	150.0	1.5	1.5	13.3	20.0	4.5	142.0	47.9	638.8	215.
	150.0	1.5	1.5	13.3	20.0	4.5	142.0	23.4	638.8	105
	150.0	1.5	1.5	13.3	20.0	4.5	142.0	12.3	638.8	55.
	150.0	1.5	1.5	13.3	20.0	4.5	142.0	2.9	638.8	13.
	150.0	1.5	1.5	13.3	20.0	4.5	174.5	106.0	785.1	476.
	150.0	1.5	1.5	13.3	20.0	4.5	174.5	80.9	785.1	364. 272.
	150.0 150.0	1.5 1.5	1.5 1.5	13.3 13.3	20.0 20.0	4.5 4.5	174.5 174.5	60.5 47.9	785.1 785.1	272.
	150.0	1.5	1.5	13.3	20.0	4.5	174.5	32.3	785.1	145.
	150.0	1.5	1.5	13.3	20.0	4.5	174.5	23.4	785.1	145.
	150.0	1.5	1.5	13.3	20.0	4.5	174.5	2.3	785.1	105
	150.0	1.5	1.5	13.3	20.0	4.5	191.5	106.0	861.5	476.
	150.0	1.5	1.5	13.3	20.0	4.5	191.5	80.9	861.5	364.
	150.0	1.5	1.5	13.3	20.0	4.5	191.5	60.5	861.5	272.
	150.0	1.5	1.5	13.3	20.0	4.5	191.5	47.9	861.5	215.
	150.0	1.5	1.5	13.3	20.0	4.5	191.5	32.3	861.5	145.
	150.0	1.5	1.5	13.3	20.0	4.5	191.5	23.4	861.5	105.
	150.0	1.5	1.5	13.3	20.0	4.5	191.5	2.3	861.5	10.
	150.0	1.5	1.5	13.3	20.0	4.5	216.5	106.0	974.0	476.
	150.0	1.5	1.5	13.3	20.0	4.5	216.5	80.9	974.0	364.
	150.0	1.5	1.5	13.3	20.0	4.5	216.5	60.5	974.0	272.
	150.0	1.5	1.5	13.3	20.0	4.5	216.5	47.9	974.0	215.
	150.0 150.0	1.5	1.5	13.3	20.0	4.5	216.5	32.3	974.0	145. 105.
	150.0	1.5 1.5	1.5 1.5	13.3 13.3	20.0 20.0	4.5 4.5	216.5 216.5	23.4 2.3	974.0 974.0	105.

	150.0	1.5	1.5	13.3	20.0	4.5	237.0	107.8	1066.2	485.1
_	150.0	1.5	1.5	13.3	20.0	4.5	237.0	80.9	1066.2	364.0
Beams	150.0	2.0	2.7	39.0	104.0	31.9	19.2	91.2	610.5	2903.7
	150.0	2.0	2.7	36.5	97.3	29.8	17.7	79.0	526.6	2354.9
	150.0	2.0	2.7	29.2	77.8	23.8	14.2	52.0	337.5	1238.6
	150.0	2.0	1.0	104.8	104.8	32.1	90.2	93.8	2894.8	3009.9
	150.0	2.0	1.0	86.8	86.8	26.6	99.5	22.9	2643.4	608.8
	150.0	2.0	1.0	32.0	32.0	9.8	158.3	60.5	1551.6	592.9
e: 1	150.0	2.0	1.0	32.0	32.0	9.8	158.3	47.9	1551.6	469.6
Girders	150.0	2.0	1.0	54.6	54.6	16.7	6.0	73.5	100.3	1228.6
	150.0	2.0	2.5	52.8	131.9	40.4	33.3	66.5	1346.1	2685.7
	150.0	2.0	2.5	59.5	148.8	45.6	64.6	62.3	2942.1	2835.8
	150.0	2.0	2.5	11.0	27.5	8.4	57.6	27.9	485.0	235.1
	150.0	2.0	2.5	70.8	177.1	54.2	93.0	61.0	5043.5	3308.1
	150.0	2.0	2.5	25.1	62.7	19.2	84.5	14.0	1622.8	268.9
	150.0	2.0	2.5	81.6	204.0	62.5	120.0	59.8	7495.4	3737.3
	150.0	2.0	2.5	18.8	46.9	14.4	110.2	10.9	1581.5	156.7
	150.0	2.0	2.5	80.2	200.4	61.4	142.0	43.5	8715.7	2669.9
	150.0	2.0	2.0	105.8	211.5	64.8	174.5	55.2	11302.7	3573.3
	150.0	2.0	2.0	105.2	210.3	64.4	191.5	55.4	12335.4	3569.7
	150.0	2.0	2.0	105.8	211.5	64.8	216.5	55.2	14023.1	3573.3
Exterior Walls	150.0	2.0	2.0	39.7	79.3	24.3	237.0	87.0	5758.2	2113.8
North Walls										
NOITH Walls	13.9				648.7	9.0	20.3	97.9	183.1	882.8
	12.9	-	-	-	639.4	8.2	138.5	99.1	1142.3	817.4
	12.0		_	-	1712.0	20.5	138.5	99.1	2845.3	2035.9
	28.0	-	-	-	103.6	20.3	158.2	72.1	458.9	2033.9
	176.5	-	-	-	34.3	6.1	232.4	109.4	1406.6	662.1
East Walls	170.5				54.5	0.1	232.4	105.4	1400.0	002.1
East wans	12.0	-	-		121.9	1.5	236.4	87.9	345.8	128.6
	12.9	-	-		341.4	4.4	234.4	55.6	1032.3	244.9
	176.5	-	-		178.7	31.5	232.9	32.1	7347.0	1012.6
	28.0	-	-		267.8	7.5	232.9	17.1	1746.1	128.2
South Walls	20.0				20710	7.5	202.0	1/11	17 10.1	120.2
South Walls	12.9	-	-		231.2	3.0	202.7	1.4	604.6	4.2
	12.0	-	-	-	193.6	2.3	157.9	1.4	366.9	3.3
	28.0	-	-	-	463.0	13.0	96.2	1.3	1247.1	16.9
	12.0	-	-	-	307.6	3.7	96.2	1.3	355.1	4.8
	12.0	-	-	-	627.8	7.5	27.9	41.0	210.2	308.9
West Walls										
	12.9	-	-	-	482.3	6.2	0.3	65.6	1.9	408.1
	28.0	-	-	-	225.2	6.3	0.3	92.8	1.9	585.1
	28.0	-	-	-	209.3	5.9	49.7	12.2	291.2	71.5
	176.5	-	-	-	120.3	21.2	49.7	12.2	1054.9	258.9
Totals						3054.3			386925.5	167082.0

Center of Mass								
X - Direction	126.7							
Y - Direction 54.7								

Center of Rigidity

	Center of Rigidity										
	Frame	Stiffness, k (k/in)		Dist in Y-dirn from (0,0) (ft)	k*Dx	k*Dy					
	6	333.3	64.8	-	21583.3	-					
North- South	8	322.6	120.2	-	38776.8	-					
No	10	588.2	174.7	-	102763.5	-					
	13	588.2	216.7	-	127469.4	-					
st	D	238.1	-	75.9	-	18082.9					
Me	E	256.4	-	47.9	-	12286.4					
East-West	G	238.1	-	57.9	-	13784.8					
ш	К	243.9	-	23.4	-	5711.5					

		Center of Rigidity					
-	290593.0 1832.4	Xr=	158.59	ft			
∑k*Dy = ∑k _{EW} =	49865.5 976.5	Yr =	51.07	ft			

Appendix B.4: Wind Load Cases

Wind Load Input Values

Distribution of Level 1 Story Shear Force N-S E-W									
Center of Rigidity	158.6	ft	51.1	ft					
Center of Mass	126.7	ft	54.7	ft					
CR-CM =	31.9	ft	3.6	ft					
Ву	229.0	ft							
0.15 By	34.4	ft							
Bx	110.0	ft							
0.15 Bx	16.5	ft							

Wind Case 1

North-South

Wind Case 1: North-South									
F _{NS} (kip)	463.7	e _{NS} (ft)	31.9						
F _{EW} (kip)	0.0	e _{EW} (ft)	0.0						
M _{NS} (k-ft)	14787.2								
M _{EW} (k-ft)	0.0								

	Frame	k (k/in)	∑k _{NS} (k/in)	∑k _{ew} (k/in)	Direct Shear (kip)	d (in)	kd ²	J =∑kd²	Torsional Shear (kip)	Total Shear (kip)
	6	333.3	1832.4	-	84.4	93.84	2935150.7	5896874.7	78.4	162.8
North- South	8	322.6	1832.4	-	81.6	38.38	475153.6	5896874.7	31.0	112.7
North- South	10	588.2	1832.4	-	148.9	-16.11	152677.9	5896874.7	-23.8	125.1
	13	588.2	1832.4	-	148.9	-58.11	1986379.6	5896874.7	-85.7	63.1
st	D	238.1	-	976.5	0.0	24.88	147415.6	5896874.7	14.9	14.9
We	E	256.4	-	976.5	0.0	-3.15	2541.6	5896874.7	-2.0	-2.0
East-West	G	238.1	-	976.5	0.0	6.83	11108.9	5896874.7	4.1	4.1
Ш	К	243.9	-	976.5	0.0	-27.65	186446.9	5896874.7	-16.9	-16.9

East-West

Wind Case 1: East-West									
F _{NS} (kip)	0.0	e _{NS} (ft)	0.0						
F _{EW} (kip)	185.9	e _{EW} (ft)	3.6						
M _{NS} (k-ft)	0.0								
M _{EW} (k-ft)	674.9								

	Frame	k (k/in)	∑k _{NS} (k/in)	∑k _{ew} (k/in)	Direct Shear (kip)	d (in)	kd ²	J =∑kd²	Torsional Shear (kip)	Total Shear (kip)
	6	333.3	1832.4	-	0.0	93.84	2935150.7	5896874.7	3.6	3.6
North- South	8	322.6	1832.4	-	0.0	38.38	475153.6	5896874.7	1.4	1.4
North- South	10	588.2	1832.4	-	0.0	-16.11	152677.9	5896874.7	-1.1	-1.1
	13	588.2	1832.4	-	0.0	-58.11	1986379.6	5896874.7	-3.9	-3.9
st	D	238.1	-	976.5	45.3	24.88	147415.6	5896874.7	0.7	46.0
Me	Е	256.4	-	976.5	48.8	-3.15	2541.6	5896874.7	-0.1	48.7
East-West	G	238.1	-	976.5	45.3	6.83	11108.9	5896874.7	0.2	45.5
Ц	К	243.9	-	976.5	46.4	-27.65	186446.9	5896874.7	-0.8	45.7

Wind Case 2

North-South + 0.15By

Wind Case 2: North-South + 0.15 By									
0.75 F _{NS} (kip)	347.8	e _{NS} (ft)	66.2						
0.75 F _{EW} (kip)	0.0	e _{EW} (ft)	0.0						
M _{NS} (k-ft)	23036.4								
M _{FW} (k-ft)	0.0								

	Frame	k (k/in)	∑k _{ns} (k/in)	∑k _{ew} (k/in)	Direct Shear (kip)	d (in)	kd ²	J = ∑kd²	Torsional Shear (kip)	Total Shear (kip)
	6	333.3	1832.4	-	63.3	93.84	2935150.7	5896874.7	122.2	185.5
North- South	8	322.6	1832.4	-	61.2	38.38	475153.6	5896874.7	48.4	109.6
Sol	10	588.2	1832.4	-	111.6	-16.11	152677.9	5896874.7	-37.0	74.6
	13	588.2	1832.4	-	111.6	-58.11	1986379.6	5896874.7	-133.5	-21.9
st	D	238.1	-	976.5	0.0	24.88	147415.6	5896874.7	23.1	23.1
Me	Е	256.4	-	976.5	0.0	-3.15	2541.6	5896874.7	-3.2	-3.2
East-West	G	238.1	-	976.5	0.0	6.83	11108.9	5896874.7	6.4	6.4
<u> </u>	К	243.9	-	976.5	0.0	-27.65	186446.9	5896874.7	-26.3	-26.3

North-South - 0.15By

Wind Case 2: North-South - 0.15 By									
0.75 F _{NS} (kip)	347.8	e _{NS} (ft)	-2.5						
0.75 F _{EW} (kip)	0.0	e _{EW} (ft)	0.0						
M _{NS} (k-ft)	-855.5								
M _{EW} (k-ft)	0.0								

	Frame	k (k/in)	∑k _{NS} (k/in)	∑k _{ew} (k/in)	Direct Shear (kip)	d (in)	kd ²	J = ∑kd²	Torsional Shear (kip)	Total Shear (kip)
	6	333.3	1832.4	-	63.3	93.84	2935150.7	5896874.7	-4.5	58.7
North- South	8	322.6	1832.4	-	61.2	38.38	475153.6	5896874.7	-1.8	59.4
Noi Soi	10	588.2	1832.4	-	111.6	-16.11	152677.9	5896874.7	1.4	113.0
	13	588.2	1832.4	-	111.6	-58.11	1986379.6	5896874.7	5.0	116.6
st	D	238.1	-	976.5	0.0	24.88	147415.6	5896874.7	-0.9	-0.9
We	E	256.4	-	976.5	0.0	-3.15	2541.6	5896874.7	0.1	0.1
East-West	G	238.1	-	976.5	0.0	6.83	11108.9	5896874.7	-0.2	-0.2
<u>Ц</u>	К	243.9	-	976.5	0.0	-27.65	186446.9	5896874.7	1.0	1.0

East-West + 0.15By

Wind Case 2: East-West + 0.15 Bx									
0.75 F _{NS} (kip)	0.0	e _{NS} (ft)	0.0						
0.75 F _{EW} (kip)	139.4	e _{EW} (ft)	20.1						
M _{NS} (k-ft)	0.0								
M _{EW} (k-ft)	2806.8								

	Frame	k (k/in)	∑k _{NS} (k/in)	∑k _{ew} (k/in)	Direct Shear (kip)	d (in)	kd²	J = ∑kd²	Torsional Shear (kip)	Total Shear (kip)
	6	333.3	1832.4	-	0.0	93.84	2935150.7	5896874.7	14.9	14.9
North- South	8	322.6	1832.4	-	0.0	38.38	475153.6	5896874.7	5.9	5.9
So	10	588.2	1832.4	-	0.0	-16.11	152677.9	5896874.7	-4.5	-4.5
	13	588.2	1832.4	-	0.0	-58.11	1986379.6	5896874.7	-16.3	-16.3
st	D	238.1	-	976.5	34.0	24.88	147415.6	5896874.7	2.8	36.8
We	E	256.4	-	976.5	36.6	-3.15	2541.6	5896874.7	-0.4	36.2
East-West	G	238.1	-	976.5	34.0	6.83	11108.9	5896874.7	0.8	34.8
ш	К	243.9	-	976.5	34.8	-27.65	186446.9	5896874.7	-3.2	31.6

East-West - 0.15By

Wind Case 2: East-West - 0.15 Bx									
0.75 F _{NS} (kip)	0.0	e _{NS} (ft)	0.0						
0.75 F _{EW} (kip)	139.4	e _{EW} (ft)	-12.9						
M _{NS} (k-ft)	0.0								
M _{EW} (k-ft)	-1794.5								

	Frame	k (k/in)	∑k _{ns} (k/in)	∑k _{ew} (k/in)	Direct Shear (kip)	d (in)	kd ²	J = ∑kd²	Torsional Shear (kip)	Total Shear (kip)
	6	333.3	1832.4	-	0.0	93.84	2935150.7	5896874.7	-9.5	-9.5
North- South	8	322.6	1832.4	-	0.0	38.38	475153.6	5896874.7	-3.8	-3.8
North- South	10	588.2	1832.4	-	0.0	-16.11	152677.9	5896874.7	2.9	2.9
	13	588.2	1832.4	-	0.0	-58.11	1986379.6	5896874.7	10.4	10.4
st	D	238.1	-	976.5	34.0	24.88	147415.6	5896874.7	-1.8	32.2
We	Е	256.4	-	976.5	36.6	-3.15	2541.6	5896874.7	0.2	36.9
East-West	G	238.1	-	976.5	34.0	6.83	11108.9	5896874.7	-0.5	33.5
	К	243.9	-	976.5	34.8	-27.65	186446.9	5896874.7	2.1	36.9

Wind Case 3

North-South and East-West

Wi	nd Case 3:	NS + EW	
0.75 F _{NS} (kip)	347.8	e _{NS} (ft)	31.9
0.75 F _{EW} (kip)	139.4	e _{EW} (ft)	3.6
M _{NS} (k-ft)	11090.4		
M _{EW} (k-ft)	506.1		

	Frame	k (k/in)	∑k _{ns} (k/in)	∑k _{ew} (k/in)	Direct Shear (kip)	d (in)	kd ²	J = ∑kd²	Torsional Shear (kip)	Total Shear (kip)
	6	333.3	1832.4	-	63.3	93.84	2935150.7	5896874.7	61.5	124.8
North- South	8	322.6	1832.4	-	61.2	38.38	475153.6	5896874.7	24.3	85.6
North- South	10	588.2	1832.4	-	111.6	-16.11	152677.9	5896874.7	-18.6	93.0
	13	588.2	1832.4	-	111.6	-58.11	1986379.6	5896874.7	-67.2	44.4
st	D	238.1	-	976.5	34.0	24.88	147415.6	5896874.7	11.7	45.6
We	E	256.4	-	976.5	36.6	-3.15	2541.6	5896874.7	-1.6	35.0
East-West	G	238.1	-	976.5	34.0	6.83	11108.9	5896874.7	3.2	37.2
<u> </u>	К	243.9	-	976.5	34.8	-27.65	186446.9	5896874.7	-13.3	21.6

Structural

Wind Case 4

(North-South + 0.15By)+(East-West + 0.15Bx)

Wind Case 4: (N-S + 0.15 By) + (E-W + 0.15 Bx)								
0.563 F _{NS} (kip)	261.1	e _{NS} (ft)	66.2					
0.563 F _{EW} (kip)	104.7	e _{EW} (ft)	20.1					
M _{NS} (k-ft)	17292.6							
M _{EW} (k-ft)	2107.0							

	_		∑k _{ns}	∑k _{ew}	Direct	d			Torsional	Total
	Frame	k (k/in)	(k/in)	(k/in)	Shear (kip)	(in)	kd ²	J = ∑kd²	Shear (kip)	Shear (kip)
	6	333.3	1832.4	-	47.5	93.84	2935150.7	5896874.7	102.9	150.4
North- South	8	322.6	1832.4	-	46.0	38.38	475153.6	5896874.7	40.7	86.7
North- South	10	588.2	1832.4	-	83.8	-16.11	152677.9	5896874.7	-31.2	52.6
	13	588.2	1832.4	-	83.8	-58.11	1986379.6	5896874.7	-112.5	-28.6
st	D	238.1	-	976.5	25.5	24.88	147415.6	5896874.7	19.5	45.0
We	E	256.4	-	976.5	27.5	-3.15	2541.6	5896874.7	-2.7	24.8
East-West	G	238.1	-	976.5	25.5	6.83	11108.9	5896874.7	5.4	30.9
Ш	К	243.9	-	976.5	26.1	-27.65	186446.9	5896874.7	-22.2	4.0

(North-South + 0.15By)+(East-West - 0.15Bx)

Wind Case 4: (N-S + 0.15 By) + (E-W - 0.15 Bx)								
0.563 F _{NS} (kip)	261.1	e _{NS} (ft)	66.2					
0.563 F _{EW} (kip)	104.7	e _{EW} (ft)	-12.9					
M _{NS} (k-ft)	17292.6							
M _{EW} (k-ft)	-1347.1							

	Frame	k (k/in)	∑k _{ns} (k/in)	∑k _{ew} (k/in)	Direct Shear (kip)	d (in)	kd ²	J = ∑kd²	Torsional Shear (kip)	Total Shear (kip)
	6	333.3	1832.4	-	47.5	93.84	2935150.7	5896874.7	84.6	132.1
North- South	8	322.6	1832.4	-	46.0	38.38	475153.6	5896874.7	33.5	79.4
North- South	10	588.2	1832.4	-	83.8	-16.11	152677.9	5896874.7	-25.6	58.2
	13	588.2	1832.4	-	83.8	-58.11	1986379.6	5896874.7	-92.4	-8.6
st	D	238.1	-	976.5	25.5	24.88	147415.6	5896874.7	16.0	41.5
We	Е	256.4	-	976.5	27.5	-3.15	2541.6	5896874.7	-2.2	25.3
East-West	G	238.1	-	976.5	25.5	6.83	11108.9	5896874.7	4.4	29.9
ш	К	243.9	-	976.5	26.1	-27.65	186446.9	5896874.7	-18.2	7.9

(North-South - 0.15By)+(East-West + 0.15Bx)

Wind Case 4: (N-S - 0.15 By) + (E-W + 0.15 Bx)								
0.563 F _{NS} (kip)	261.1	e _{NS} (ft)	-2.5					
0.563 F _{EW} (kip)	104.7	e _{EW} (ft)	20.1					
M _{NS} (k-ft)	-642.2							
M _{EW} (k-ft)	2107.0							

Frame	k (k/in)	∑k _{NS}	∑k _{ew} (k/in)	Direct Shear	d (in)	kd ²	J = ∑kd²	Torsional Shear	Total Shear
				(kip)	(,			(kip)	(kip)
6	333.3	1832.4	-	47.5	93.84	2935150.7	5896874.7	7.8	55.3
8	322.6	1832.4	-	46.0	38.38	475153.6	5896874.7	3.1	49.0
10	588.2	1832.4	-	83.8	-16.11	152677.9	5896874.7	-2.4	81.5
13	588.2	1832.4	-	83.8	-58.11	1986379.6	5896874.7	-8.5	75.3
D	238.1	-	976.5	25.5	24.88	147415.6	5896874.7	1.5	27.0
Е	256.4	-	976.5	27.5	-3.15	2541.6	5896874.7	-0.2	27.3
G	238.1	-	976.5	25.5	6.83	11108.9	5896874.7	0.4	25.9
К	243.9	-	976.5	26.1	-27.65	186446.9	5896874.7	-1.7	24.5
	6 8 10 13 D E G	6 333.3 8 322.6 10 588.2 13 588.2 D 238.1 E 256.4 G 238.1	Frame k (k/m) 6 333.3 1832.4 8 322.6 1832.4 10 588.2 1832.4 13 588.2 1832.4 D 238.1 - E 256.4 - G 238.1 -	Prame k (k/m) (k/in) (k/in) 6 333.3 1832.4 - 8 322.6 1832.4 - 10 588.2 1832.4 - 13 588.2 1832.4 - D 238.1 - 976.5 E 256.4 - 976.5 G 238.1 - 976.5	Framek (k/in) $\sum k_{NS}$ (k/in) $\sum k_{EW}$ (k/in)Shear (kip)6333.31832.4-47.58322.61832.4-46.010588.21832.4-83.813588.21832.4-83.8D238.1-976.525.5E256.4-976.527.5G238.1-976.525.5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Framek (k/in) $\frac{\sum k_{NS}}{(k/in)}$ $\frac{\sum k_{EW}}{(k/in)}$ Shear (kip)d (in) kd^2 $J = \sum kd^2$ 6333.31832.4-47.593.842935150.75896874.78322.61832.4-46.038.38475153.65896874.710588.21832.4-83.8-16.11152677.95896874.713588.21832.4-83.8-58.111986379.65896874.7D238.1-976.525.524.88147415.65896874.7G238.1-976.525.56.8311108.95896874.7	Framek (k/in) $\sum_{(k/in)}$ $\sum_{(k/in)}$ $\sum_{(k/in)}$ $\sum_{(k/in)}$ d (in) kd^2 $J = \sum kd^2$ Shear (kip)6333.31832.4-47.593.842935150.75896874.77.88322.61832.4-46.038.38475153.65896874.73.110588.21832.4-83.8-16.11152677.95896874.7-2.413588.21832.4-83.8-58.111986379.65896874.7-8.5D238.1-976.525.524.88147415.65896874.7-0.2E256.4-976.527.5-3.152541.65896874.7-0.2G238.1-976.525.56.8311108.95896874.70.4

(North-South - 0.15By)+(East-West - 0.15Bx)

Wind Case 4: (N-S - 0.15 By) + (E-W - 0.15 Bx)								
0.563 F _{NS} (kip)	261.1	e _{NS} (ft)	-2.5					
0.563 F _{EW} (kip)	104.7	e _{EW} (ft)	-12.9					
M _{NS} (k-ft)	-642.2							
M _{EW} (k-ft)	-1347.1							

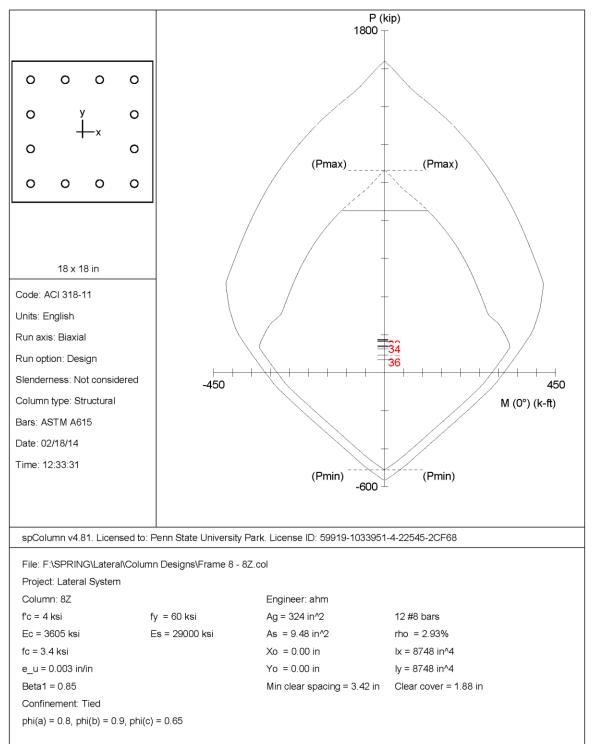
	Frame	k (k/in)	∑k _{NS} (k/in)	∑k _{ew} (k/in)	Direct Shear (kip)	d (in)	kd ²	J = ∑kd²	Torsional Shear (kip)	Total Shear (kip)
	6	333.3	1832.4	-	47.5	93.84	2935150.7	5896874.7	-10.6	36.9
North- South	8	322.6	1832.4	-	46.0	38.38	475153.6	5896874.7	-4.2	41.8
North- South	10	588.2	1832.4	-	83.8	-16.11	152677.9	5896874.7	3.2	87.0
	13	588.2	1832.4	-	83.8	-58.11	1986379.6	5896874.7	11.5	95.3
st	D	238.1	-	976.5	25.5	24.88	147415.6	5896874.7	-2.0	23.5
We	E	256.4	-	976.5	27.5	-3.15	2541.6	5896874.7	0.3	27.8
East-West	G	238.1	-	976.5	25.5	6.83	11108.9	5896874.7	-0.5	25.0
<u> </u>	К	243.9	-	976.5	26.1	-27.65	186446.9	5896874.7	2.3	28.4

Appendix B.5: Column Lateral Loadings to be Used in spColumn Analysis

RISA Lateral Results to be Used in										
	spColumn Analysis									
	Column	P (kip)	M (ft-k)	Direction						
	Z	6.887	-141.789	У						
Frame 8	D	3.532	-197.876	у						
	G	-0.857	-203.875	У						
	М	-9.563	-159.903	у						
	A.2	5.524	-80.339	У						
	В	-0.201	-106.708	у						
	С	2.752	-108.529	У						
Frame 13	Е	-1.436	-111.652	у						
	Н	7.706	-117.023	У						
	К	-6.849	-121.915	у						
	N	-7.495	-96.467	у						
Frame D	8	3.083	-43.415	х						
Frame E	13	3.135	-42.596	х						
Frame G	8	3.05	-42.943	х						
Frame K	13	3.094	-42.275	x						

*NOTE: Positive axial forces denote compression.

*NOTE: Because negative axial forces denote tension, thus helping to resist some of the compressive forces, these forces will not be considered during analysis of the columns.


*NOTE: Positive moments denote that the left hand face of the upper column is in tension and the right hand face of the bottom column is in tension.

Structural

Appendix B.6: spColumn Output for Final Column Designs

Column Line 8 Columns

Column 8Z

Page 1 02/18/14 12:32 PM

 $\label{eq:structurepoint} \begin{array}{l} \mbox{structurepoint} & -\mbox{structurepoint} & -\mbox{structu$

				000	000			0									
				00	00			00									
000	000	000	000	00		00	000	00		00	00	0 000	00000	000	0 00	000	
00	0	00	00	00		00	00	00		00	00	00	00	00	00	00	
00		00	00	00		00	00	00		00	00	00	00	00	00	00	
000	000	00	00	00		00	00	00		00	00	00	00	00	00	00	
	00	000	000	00		00	00	00		00	00	00	00	00	00	00	
0	00	00		00	00	00	00	00	0	00	00	00	00	00	00	00	
000	000	00		000	000	00	000	00	0	00	0 000	00	00	00	00	00	(TM)

spColumn v4.81 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright © 1988-2012, STRUCTUREPOINT, LLC. All rights reserved

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program.

Page 2 02/18/14 12:32 PM

STRUCTUREPOINT - spColumn v4.81 (TM Licensed to: Penn State University F:\SPRING\Lateral\Column Designs\Fn	Park. License ID: 59919-1033951-4-22545-2CF68
General Information:	
File Name: F:\SPRING\Lateral\Colu	mn Designs\Frame 8 - 8Z.col
Project: Lateral System Column: 8Z Code: ACI 318-11	Engineer: ahm Units: English
Run Option: Design Run Axis: Biaxial	Slenderness: Not considered Column Type: Structural
Material Properties:	
f'c = 4 ksi Ec = 3605 ksi Ultimate strain = 0.003 in/in Betal = 0.85	fy = 60 ksi Es = 29000 ksi
Section:	
Rectangular: Width = 18 in	Depth = 18 in
Gross section area, Ag = 324 in^ Ix = 8748 in^4 rx = 5.19615 in Xo = 0 in	2 Iy = 8748 in^4 ry = 5.19615 in Yo = 0 in
Reinforcement:	
Bar Set: ASTM A615 Size Jam (in) Area (in^2) Size	Diam (in) Area (in^2) Size Diam (in) Area (in^2)
# 3 0.38 0.11 # 4 # 6 0.75 0.44 # 7 # 9 1.13 1.00 # 10 # 14 1.69 2.25 # 18	0.50 0.20 # 5 0.63 0.31 0.88 0.60 # 8 1.00 0.79 1.27 1.27 # 1 1.41 1.56 2.26 4.00 4.00 1.00 1.10 1.56
Bar selection: Minimum number of Asmin = $0.01 + Ag = 3.24 \text{ in}^2$, A	bars
Confinement: Tied; #3 ties with # phi(a) = 0.8, phi(b) = 0.9, phi	
Layout: Rectangular Pattern: All Sides Equal (Cover Total steel area: As = 9.48 in^2 Minimum clear spacing = 3.42 in	to transverse reinforcement) at rho = 2.93%
12 #8 Cover = 1.5 in	
Service Loads:	
	p Mx @ Bot My @ Top My @ Bot it k-ft k-ft k-ft
1 Dead 88.83 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Live 38.36 0.0 Wind 6.89 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
EQ 0.00 0.0 Snow 14.72 0.0	0 0.00 0.00 0.00 0 0.00 6.87 0.00
2 Dead 88.83 0.0	
Wind 6.89 0.0	0 0.00 -141.79 0.00
EQ 0.00 0.0 Snow 14.72 0.0	
Sustained Load Factors:	
Load Factor Case (%)	
Dead 100	
Live 0 Wind 0	
EQ 0	
Snow 0	

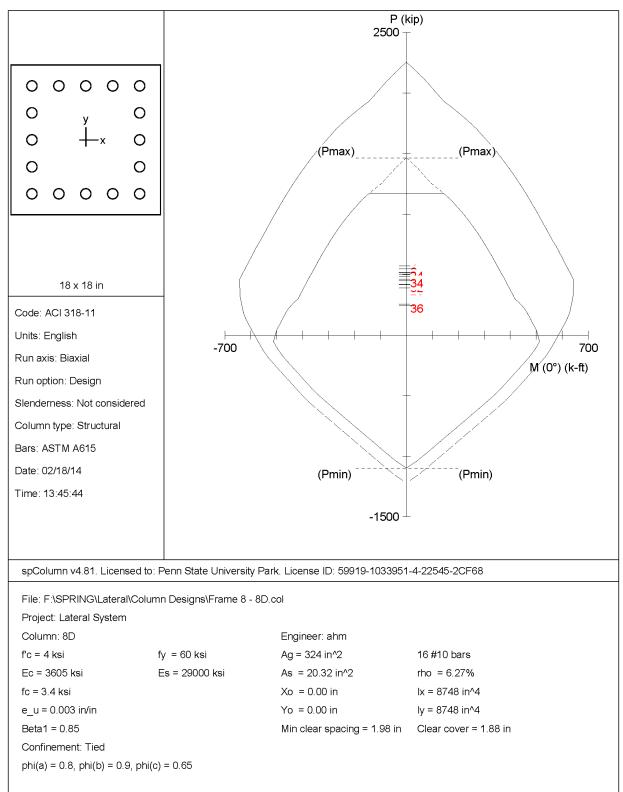
Load Combinations:

UI = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake + 0.000*Snow U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake + 0.500*Snow STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Lateral\Column Designs\Frame 8 - 8Z.col

U3	=	1.200*Dead +	1.000*Live	$^{+}$	0.000*Wind	+	0.000*EarthQuake	+	1.600*Snow
U4	-	1.200*Dead +	0.000*Live	$^{+}$	0.800*Wind	+	0.000*EarthQuake	+	1.600*Snow
U5	=	1.200*Dead +	1.000*Live	$^{+}$	1.600*Wind	+	0.000*EarthQuake	+	0.500*Snow
U6	-	0.900*Dead +	0.000*Live	$^{+}$	1.600*Wind	+	0.000*EarthQuake	+	0.000*Snow
U7	=	1.200*Dead +	0.000*Live	122	0.800*Wind	+	0.000*EarthQuake	$^{+}$	1.600*Snow
U8	=	1.200*Dead +	1.000*Live	122	1.600*Wind	+	0.000*EarthQuake	+	0.500*Snow
U9	=	0.900*Dead +	0.000*Live	722	1.600*Wind	$^{+}$	0.000*EarthQuake	+	0.000*Snow

Factored Loads and Moments with Corresponding Capacities:

Design/Required ratio PhiMn/Mu >= 1.00 NOTE: Each loading combination includes the following cases: First line - at column top Second line - at column bottom


	Load	Pu	Mux	Muy	PhiMnx		PhiMn/Mu N)t depth	eps_t	Phi
No.	Combo	kip	k-ft	k-ft	k-ft	k-ft		in	in		
1	1 U1	124.36	0.00	49.56	-0.00	327.03	6.599	5.73	15.63	0.00518	0.900
2		124.36	0.00	0.00	327.03	0.00		5.73	15.63	0.00518	0.900
3	1 U2	175.33	0.00	71.76	-0.00	322.53	4.495	6.49	15.63	0.00422	0.834
4		175.33	0.00	0.00	322.53	0.00	999.999	6.49	15.63	0.00422	0.834
5	1 U3	168.51	0.00	69.62	-0.00	324.18	4.656	6.37	15.63	0.00436	0.846
6		168.51	0.00	0.00	324.18	0.00	999.999	6.37	15.63	0.00436	0.846
7	1 U4	135.66	0.00	-59.96	0.00	-330.85	5.518	5.85	15.63	0.00501	0.900
8		135.66	0.00	0.00	330.85	0.00	999.999	5.85	15.63	0.00501	0.900
9	1 U5	163.34	0.00	-164.80	0.00	-325.38	1.974	6.28	15.63	0.00447	0.854
10		163.34	0.00	0.00	325.38	0.00	999.999	6.28	15.63	0.00447	0.854
11	1 U6	90.97	0.00	-195.00	0.00	-315.47	1.618	5.37	15.63	0.00573	0.900
12		90.97	0.00	0.00	315.47	0.00	999.999	5.37	15.63	0.00573	0.900
13	1 U7	124.64	0.00	166.90	-0.00	327.12	1.960	5.73	15.63	0.00518	0.900
14		124.64	0.00	0.00	327.12	0.00	999.999	5.73	15.63	0.00518	0.900
15	1 U8	141.30	0.00	288.93	-0.00	330.01	1.142	5.93	15.63	0.00490	0.891
16		141.30	0.00	0.00	330.01	0.00	999.999	5.93	15.63	0.00490	0.891
17	1 U9	68.93	0.00	258.72	-0.00	307.62	1.189	5.15	15.63	0.00611	0.900
18		68.93	0.00	0.00	307.62	0.00	999.999	5.15	15.63	0.00611	0.900
19	2 U1	124.36	0.00	49.56	-0.00	327.03	6.599	5.73	15.63	0.00518	0.900
20		124.36	0.00	0.00	327.03	0.00	999.999	5.73	15.63	0.00518	0.900
21	2 U2	173.32	0.00	73.08	-0.00	323.03	4.420	6.45	15.63	0.00426	0.837
22		173.32	0.00	0.00	323.03	0.00	999.999	6.45	15.63	0.00426	0.837
23	2 U3	167.25	0.00	70.45	-0.00	324.48	4.606	6.35	15.63	0.00439	0.848
24		167.25	0.00	0.00	324.48	0.00		6.35	15.63	0.00439	0.848
25	2 U4	135.66	0.00	-59.96	0.00	-330.85	5.518	5.85	15.63	0.00501	0.900
26		135.66	0.00	0.00	330.85	0.00	999.999	5.85	15.63	0.00501	0.900
27	2 U5	162.08	0.00	-163.97	0.00	-325.67	1.986	6.26	15.63	0.00449	0.857
28		162.08	0.00	0.00	325.67	0.00		6.26	15.63	0.00449	0.857
29	2 U6	90.97	0.00	-195.00	0.00	-315.47	1.618	5.37	15.63	0.00573	0.900
30		90.97	0.00	0.00	315.47	0.00		5.37	15.63	0.00573	0.900
31	2 U7	124.64	0.00	166.90	-0.00	327.12	1.960	5.73		0.00518	0.900
32		124.64	0.00	0.00	327.12	0.00	999.999	5.73	15.63	0.00518	0.900
33	2 U8	140.04	0.00	289.76	-0.00	330.25	1.140	5.92	15.63		0.894
34		140.04	0.00	0.00	330.25	0.00	999.999	5.92	15.63	0.00492	0.894
35	2 U9	68.93	0.00	258.72	-0.00		1.189	5.15	15.63	0.00611	0.900
36		68.93	0.00	0.00	307.62	0.00	999.999	5.15	15.63	0.00611	0.900

*** End of output ***

Page 3 02/18/14 12:32 PM

Final Report

Column 8D

Page 1 02/18/14 01:42 PM

 $\label{eq:structurepoint} \begin{array}{l} \mbox{structurepoint} & -\mbox{structurepoint} & -\mbox{structu$

				000	000			0									
				00	00			00									
00	000	000	000	00		00	000	00		00	00	0 000	00000	000	0 00	000	
00	0	00	00	00		00	00	00		00	00	00	00	00	00	00	
00		00	00	00		00	00	00		00	00	00	00	00	00	00	
00	000	00	00	00		00	00	00		00	00	00	00	00	00	00	
	00	000	000	00		00	00	00		00	00	00	00	00	00	00	
0	00	00		00	00	00	00	00	0	00	00	00	00	00	00	00	
00	000	00		000	000	00	000	00	0	00	0 000	00	00	00	00	00	(TM)

spColumn v4.81 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright © 1908-2012, STRUCTUREPOINT, LLC. All rights reserved

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program.

onovol Trf	a mmati an t							
eneral Inf		atoral\Col	ump Docid	ng\Frama	9 <u> </u>	col		
Project: Column:	Lateral Syste			Engineer: Units: En	ahm	001		
Run Optio	n: Design Biaxial			Slenderne Column Ty	ss: Not			
aterial Pr	operties:			171				
f'c = 4 Ec = 3	605 ksi strain = 0.003	3 in/in		fy = 60 Es = 29	ksi 000 ksi			
ection:								
Rectangul	ar: Width = 18	3 in		Depth = 1	8 in			
Gross sec Ix = 874 rx = 5.1 Xo = 0 i	9615 in	= 324 in		Iy = 874 ry = 5.1 Yo = 0 i	9615 in			
einforceme								
Bar Set: Size Diam	ASTM A615 (in) Area (in	n^2) Siz	e Diam (i	n) Area (in^2)	Size D	iam (in) Are	a (in^2)
# 3 # 6 # 9 # 14	0.38 0 0.75 0 1.13 1 1.69 2	0.11 # 0.44 # 1.00 # 1 2.25 # 1	4 0. 7 0. 0 1. 8 2.	50 88 27 26	0.20 0.60 1.27 4.00	# 5 # 8 # 11	0.63 1.00 1.41	0.31 0.79 1.56
	tion: Minimum		bars					
Asmin = 0 Confineme phi(a) = Layout: R	.01 * Ag = 3.2 nt: Tied; #3 t 0.8, phi(b) = ectangular	24 in^2, ties with = 0.9, ph	bars Asmax = C #10 bars, i(c) = 0.	.08 * Ag #4 with 65	= 25.92 larger	in^2 bars.		
Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total ste	.01 * Ag = 3.2 nt: Tied; #3 t 0.8, phi(b) =	24 in^2, ties with = 0.9, ph al (Cover 20.32 in^	bars Asmax = C #10 bars, i(c) = 0. to trans	.08 * Ag #4 with 65 verse rei	= 25.92 larger	in^2 bars.		
Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total ste Minimum c	.01 * Ag = 3.2 nt: Tied; #3 t 0.8, phi(b) = ectangular All Sides Equa el area: As =	24 in^2, ties with = 0.9, ph al (Cover 20.32 in^ = 1.98 in	bars Asmax = C #10 bars, i(c) = 0. to trans	.08 * Ag #4 with 65 verse rei	= 25.92 larger	in^2 bars.		
Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total ste Minimum c 16 #10 ervice Loa	.01 * Ag = 3.2 nt: Tied; #3 f 0.8, phi(b) - ectangular All Sides Equa el area: As = lear spacing - Cover = 1.5 in ds:	24 in^2, ties with = 0.9, ph al (Cover 20.32 in^ = 1.98 in	bars Asmax = C #10 bars, i(c) = 0. to trans	.08 * Ag #4 with 65 verse rei	= 25.92 larger	in^2 bars.		
Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total ste Minimum c 16 #10 ervice Loa Load No. Case	.01 * Ag = 3.2 nt: Tied; #3 t 0.8, phi(b) = ectangular All Sides Equa el area: As = lear spacing = Cover = 1.5 in ds: === Axial Load kip	24 in^2, ties with = 0.9, ph al (Cover 20.32 in^ = 1.98 in h Mx @ T k-	bars Asmax = C #10 bars, i(c) = 0. to trans 2 at rho op Mx ft	.08 * Ag #4 with 65 verse rei = 6.27% @ Bot k-ft	= 25.92 larger nforcem My @ k	in^2 bars. ent) Top -ft	My @ Bot k-ft	
Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total ste Minimum c 16 #10 ervice Loa Load No. Case	.01 * Ag = 3.2 nt: Tied; #3 t 0.8, phi(b) = ectangular All Sides Equa el area: As = lear spacing = Cover = 1.5 in ds: === Axial Load kip	24 in^2, ties with = 0.9, ph al (Cover 20.32 in^ = 1.98 in h Mx @ T k-	bars Asmax = C #10 bars, i(c) = 0. to trans 2 at rho op Mx ft	.08 * Ag #4 with 65 verse rei = 6.27% @ Bot k-ft	= 25.92 larger nforcem My @ k	in^2 bars. ent) Top -ft	My @ Bot k-ft	
Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total ste Minimum c 16 #10 ervice Loa Load No. Case	.01 * Ag = 3.2 nt: Tied; #3 t 0.8, phi(b) = ectangular All Sides Equa el area: As = lear spacing = Cover = 1.5 in ds: === Axial Load kip	24 in^2, ties with = 0.9, ph al (Cover 20.32 in^ = 1.98 in h Mx @ T k-	bars Asmax = C #10 bars, i(c) = 0. to trans 2 at rho op Mx ft	.08 * Ag #4 with 65 verse rei = 6.27% @ Bot k-ft	= 25.92 larger nforcem My @ k	in^2 bars. ent) Top -ft	My @ Bot k-ft	
Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total ste Minimum c 16 #10 ervice Loa Load No. Case	.01 * Ag = 3.2 nt: Tied; #3 1 0.8, phi(b) = ectangular All Sides Equa el area: As = lear spacing = Cover = 1.5 in ds: === Axial Load kip 278.71 131.44 3.53 0.00 51.76 278.71 97.22	24 in^2, ties with = 0.9, ph al (Cover 20.32 in^ = 1.98 in h Mx @ T k- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	bars Asmax = C #10 bars, i(c) = 0. to trans 2 at rho 00 00 00 00 00 00 00 00 00 00 00 00 00	.08 * Ag #4 with 65 verse rei = 6.27% @ Bot k-ft	= 25.92 larger nforcem -18 -6 -197 0 -4 -18 -197 0 -4 -197 0 0 -4 -197 0 0 -197 0 0	in^2 bars. ent) Top -ft	My @ Bot k-ft	
Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total ste Minimum c 16 #10 ervice Loa No. Case Load No. Case 1 Dead Live Wind EQ Snow 2 Dead Live Wind EQ Snow	.01 * Ag = 3.2 nt: Tied; #3 t 0.8, phi(b) = ectangular All Sides Equa el area: As = lear spacing = Cover = 1.5 in ds: == Axial Load kip 278.71 131.44 3.53 0.00 51.76 278.71 97.22 3.53 0.00 51.76 oad Factors:	24 in^2, ties with = 0.9, ph al (Cover 20.32 in^ = 1.98 in h Mx @ T k- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	bars Asmax = C #10 bars, i(c) = 0. to trans 2 at rho 00 00 00 00 00 00 00 00 00 00 00 00 00	.08 * Ag #4 with 65 verse rei = 6.27% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	= 25.92 larger nforcem -18 -6 -197 0 -4 -18 -197 0 -4 -197 0 0 -4 -197 0 0 -197 0 0	in^2 bars. ent) Top -ft 	My @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	
Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total stern: Total stern: Load No. Case Load No. Case Load Live Wind EQ Snow U Dead Live Wind EQ Snow U Dead Live Snow	.01 * Ag = 3.2 nt: Tied; #3 1 0.8, phi(b) = ectangular All Sides Equa el area: As = lear spacing = Cover = 1.5 in ds: === Axial Load kip 278.71 131.44 3.53 0.00 51.76 278.71 97.22 3.53 0.00 51.76 oad Factors: === Factor (%)	24 in^2, ties with = 0.9, ph al (Cover 20.32 in^ = 1.98 in h Mx @ T k- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	bars Asmax = C #10 bars, i(c) = 0. to trans 2 at rho 00 00 00 00 00 00 00 00 00 00 00 00 00	.08 * Ag #4 with 65 verse rei = 6.27% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	= 25.92 larger nforcem -18 -6 -197 0 -4 -18 -197 0 -4 -197 0 0 -4 -197 0 0 -197 0 0	in^2 bars. ent) Top -ft 	My @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	
Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total stern: Total stern: Load No. Case Load No. Case Load Live Wind EQ Snow U Dead Live Wind EQ Snow U Dead Live Snow	.01 * Ag = 3.2 nt: Tied; #3 t 0.8, phi(b) = ectangular All Sides Equa el area: As = lear spacing = Cover = 1.5 in ds: === Axial Load kip 278.71 3.53 0.00 51.76 278.71 97.22 3.53 0.00 51.76 coad Factors: Factor	24 in^2, ties with = 0.9, ph al (Cover 20.32 in^ = 1.98 in h Mx @ T k- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	bars Asmax = C #10 bars, i(c) = 0. to trans 2 at rho 00 00 00 00 00 00 00 00 00 00 00 00 00	.08 * Ag #4 with 65 verse rei = 6.27% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	= 25.92 larger nforcem -18 -6 -197 0 -4 -18 -197 0 -4 -197 0 0 -4 -197 0 0 -197 0 0	in^2 bars. ent) Top -ft 	My @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	

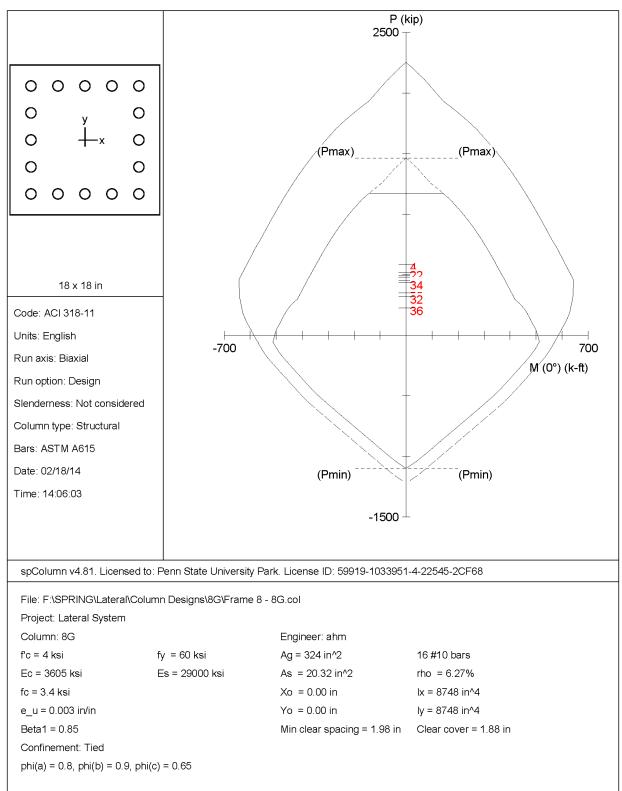
Page 2 02/18/14 01:42 PM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Lateral\Column Designs\Frame 8 - 8D.col

U3	-	1.200*Dead +	1.000*Live	$^{+}$	0.000*Wind	$^{+}$	0.000*EarthQuake	+	1.600*Snow
U4	-	1.200*Dead +	0.000*Live	$^{+}$	0.800*Wind	+	0.000*EarthQuake	+	1.600*Snow
U5	=	1.200*Dead +	1.000*Live	$^{+}$	1.600*Wind	+	0.000*EarthQuake	+	0.500*Snow
U6	=	0.900*Dead +	0.000*Live	$^{+}$	1.600*Wind	\pm	0.000*EarthQuake	+	0.000*Snow
U7	=	1.200*Dead +	0.000*Live	122	0.800*Wind	\pm	0.000*EarthQuake	$^{+}$	1.600*Snow
U8	=	1.200*Dead +	1.000*Live	122	1.600*Wind	+	0.000*EarthQuake	+	0.500*Snow
U9	=	0.900*Dead +	0.000*Live	122	1.600*Wind	+	0.000*EarthOuake	+	0.000*Snow

Factored Loads and Moments with Corresponding Capacities:

Design/Required ratio PhiMn/Mu >= 1.00 NOTE: Each loading combination includes the following cases: First line - at column top Second line - at column bottom


	Load	Pu	Mux	Muy	PhiMnx	PhiMny	PhiMn/Mu	NA depth	Dt denth	eps t	Phi
No.	Combo	kip	k-ft	k-ft	k-ft	k-ft	1 111111/ 114	in	in	°P8_°	
1	1 U1	390.19	0.00	-26.45	0.00	-395.81	14.967	9.83	15.49	0.00173	0.650
2		390.19	0.00	0.00	395.81	0.00	999.999	9.83	15.49	0.00173	0.650
3	1 U2	570.64	0.00	-35.47	0.00	-349.85	9.865	11.41	15.49	0.00107	0.650
4		570.64	0.00	0.00	349.85	0.00	999.999	11.41	15.49	0.00107	0.650
5	1 U3	548.71	0.00	-36.51	0.00	-355.40	9.734	11.20	15.49	0.00115	0.650
6		548.71	0.00	0.00	355.40	0.00	999.999	11.20	15.49	0.00115	0.650
7	1 U4	420.09	0.00	-188.23	0.00	-388.55	2.064	10.06	15.49	0.00162	0.650
8		420.09	0.00	0.00	388.55	0.00	999.999	10.06	15.49	0.00162	0.650
9	1 U5	497.42	0.00	-348.12	0.00	-368.20	1.058	10.75	15.49	0.00132	0.650
10		497.42	0.00	0.00	368.20	0.00	999.999	10.75	15.49	0.00132	0.650
11	1 U6	256.49	0.00	-333.60	0.00	-438.59	1.315		15.49	0.00245	0.683
12		256.49	0.00	0.00	438.59	0.00	999.999	8.52	15.49	0.00245	0.683
13	1 U7	414.44	0.00	128.37	-0.00	389.93	3.038		15.49	0.00164	0.650
14		414.44	0.00	0.00	389.93	0.00	999.999	10.02	15.49	0.00164	0.650
15	1 U8	486.12	0.00	285.08	-0.00	370.99	1.301	10.65	15.49	0.00136	0.650
16		486.12	0.00	0.00	371.00	0.00	999.999		15.49	0.00136	0.650
17	1 U9	245.19	0.00	299.60	-0.00	443.86	1.482		15.49	0.00256	0.691
18		245.19	0.00	0.00	443.86	0.00	999.999	8.37	15.49	0.00256	0.691
19	2 U1	390.19	0.00	-26.45	0.00	-395.81	14.967		15.49	0.00173	0.650
20		390.19	0.00	0.00	395.81	0.00	999.999	9.83	15.49	0.00173	0.650
21	2 U2	515.88	0.00	-42.39	0.00	-363.62	8.577	10.91	15.49	0.00126	0.650
22		515.88	0.00	0.00	363.62	0.00	999.999		15.49	0.00126	0.650
23	2 U3	514.49	0.00	-40.84	0.00	-363.97	8.912	10.90	15.49	0.00126	0.650
24		514.49	0.00	0.00	363.97	0.00	999.999		15.49	0.00126	0.650
25	2 U4	420.09	0.00	-188.23	0.00	-388.55	2.064		15.49	0.00162	0.650
26		420.09	0.00	0.00	388.55	0.00	999.999		15.49	0.00162	0.650
27	2 U5	463.20	0.00	-352.45	0.00	-378.02	1.073		15.49	0.00146	0.650
28		463.20	0.00	0.00	378.02	0.00	999.999	10.41	15.49	0.00146	0.650
29	2 U6	256.49	0.00	-333.60	0.00	-438.59	1.315		15.49	0.00245	0.683
30		256.49	0.00	0.00	438.59	0.00	999.999	8.52	15.49	0.00245	0.683
31	2 U7	414.44	0.00	128.37	-0.00	389.93	3.038		15.49	0.00164	0.650
32		414.44	0.00	0.00	389.93	0.00	999.999	10.02	15.49	0.00164	0.650
33	2 U8	451.90	0.00	280.75	-0.00	380.79	1.356		15.49	0.00150	0.650
34		451.90	0.00	0.00	380.79	0.00	999.999		15.49	0.00150	0.650
35	2 U9	245.19	0.00	299.60	-0.00	443.86	1.482		15.49	0.00256	0.691
36		245.19	0.00	0.00	443.86	0.00	999.999	8.37	15.49	0.00256	0.691

*** End of output ***

Page 3 02/18/14 01:42 PM

Final Report

Column 8G

Page 1 02/18/14 02:05 PM

STRUCTUREPOINT - spColumn v4.81 (TM)		
Licensed to: Penn State University Park	. License I	ID: 59919-1033951-4-22545-2CF68
F:\SPRING\Lateral\Column Designs\8G\Frame	ne 8 - 8G.c	col

00 00 00 00 0 0000000000 0 00000 00 00 00 (TM) 00000 0

spColumn v4.81 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright © 1988-2012, STRUCTUREPOINT, LLC. All rights reserved

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program.

Page 2 02/18/14 02:05 PM

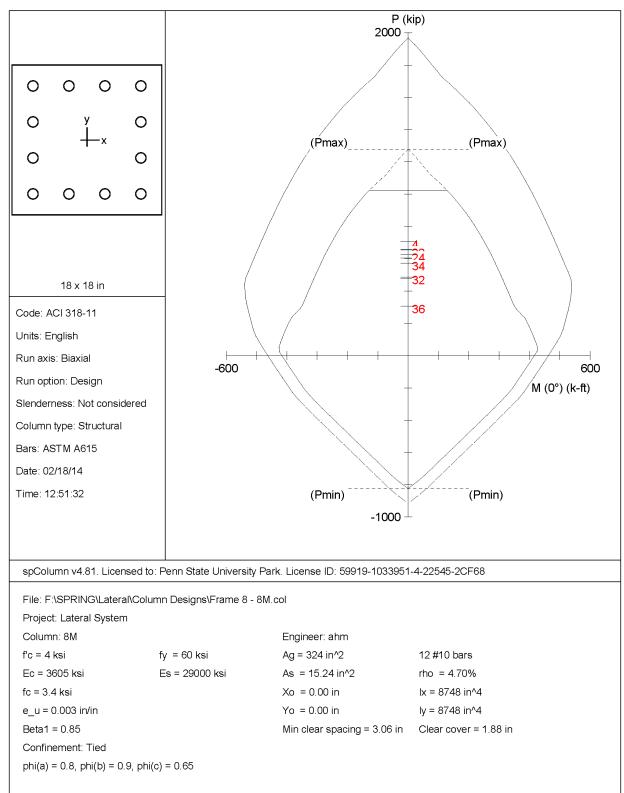
eneral Inf	ormation:					
		ceral\Column I)esigns\8G\Fr	ame 8 - 8G.co	1	
Column:	Lateral System 8G ACI 318-11	n	Engineer Units: E			
	n: Design Biaxial			ess: Not cons ype: Structur		
aterial Pr						
f'c = 4 Ec = 3 Ultimate Beta1 = 0	ksi 605 ksi strain = 0.003	in/in	fy = 6 Es = 2	0 ksi 9000 ksi		
ection:						
Rectangul	ar: Width = 18	in	Depth =	18 in		
Gross sec Ix = 874 rx = 5.1 Xo = 0 i	9615 in	= 324 in^2	Iy = 87 ry = 5. Yo = 0	19615 in		
einforceme						
Bar Set: Size Diam	ASTM A615	`2) Size Dia	am (in) Area	(in^2) Size	Diam (in) Area	(in^2)
# 3 # 6 # 9	0.38 0. 0.75 0. 1.13 1. 1.69 2.	.11 # 4 .44 # 7	0.50 0.88	0.20 # 5 0.60 # 8	0.63	0.31
# 14	1.13 1. 1.69 2.	.00 # 10 .25 # 18	1.27 2.26	1.27 # 11 4.00	1.41	1.56
Bar selec	tion: Minimum r	number of bars	5		1.41	1.56
Bar selec Asmin = 0 Confineme	tion: Minimum r .01 * Ag = 3.24 .nt: Tied; #3 ti	number of bars 4 in^2, Asmax ies with #10 k	s a = 0.08 * Ag bars, #4 wit:	= 25.92 in^2		1.56
Bar selec Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total ste	tion: Minimum r .01 * Ag = 3.24 nt: Tied; #3 ti 0.8, phi(b) = .ectangular All Sides Equal el area: As = 2	number of bars 4 in^2, Asmax ies with #10 k 0.9, phi(c) 1 (Cover to t 20.32 in^2 at	a = 0.08 * Ag pars, #4 wit: = 0.65 cransverse re	= 25.92 in^2 h larger bars		1.56
Bar selec Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total ste Minimum c	tion: Minimum r 0.01 * Ag = 3.24 nt: Tied; #3 ti 0.8, phi(b) = .ectangular All Sides Equal	number of bars 4 in^2, Asmax ies with #10 k 0.9, phi(c) 1 (Cover to t 20.32 in^2 at	a = 0.08 * Ag pars, #4 wit: = 0.65 cransverse re	= 25.92 in^2 h larger bars		1.56
Bar selec Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total ste Minimum c 16 #10	tion: Minimum r .01 * Ag = 3.24 nt: Tied; #3 ti 0.8, phi(b) = .ectangular All Sides Equal rel area: As = 2 lear spacing = Cover = 1.5 in	number of bars 4 in^2, Asmax ies with #10 k 0.9, phi(c) 1 (Cover to t 20.32 in^2 at	a = 0.08 * Ag pars, #4 wit: = 0.65 cransverse re	= 25.92 in^2 h larger bars		1.56
Bar selec Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total ste Minimum c 16 #10 ervice Loa Load No. Case	tion: Minimum r .01 * Ag = 3.24 nt: Tied; #3 ti 0.8, phi(b) = ectangular All Sides Equal el area: As = 2 clear spacing = Cover = 1.5 in ds: === Axial Load kip	number of bars 4 in^2, Asmax ies with #10 k 0.9, phi(c) 1 (Cover to t 20.32 in^2 at 1.98 in Mx @ Top k-ft	x = 0.08 * Ag bars, #4 wit: = 0.65 cransverse re. rho = 6.27% Mx @ Bot k-ft	= 25.92 in^2 h larger bars inforcement) My @ Top k-ft	My 0 Bot k-ft	1.56
Bar selec Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total ste Minimum c 16 #10 ervice Loa Load No. Case	tion: Minimum r .01 * Ag = 3.24 nt: Tied; #3 ti 0.8, phi(b) = ectangular All Sides Equal el area: As = 2 clear spacing = Cover = 1.5 in ds: === Axial Load kip	number of bars 4 in^2, Asmax ies with #10 k 0.9, phi(c) 1 (Cover to t 20.32 in^2 at 1.98 in Mx @ Top k-ft	x = 0.08 * Ag bars, #4 wit: = 0.65 cransverse re. rho = 6.27% Mx @ Bot k-ft	= 25.92 in^2 h larger bars inforcement) My @ Top k-ft	My 0 Bot k-ft	1.56
Bar selec Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total ste Minimum c 16 #10 ervice Loa Load No. Case	tion: Minimum r .01 * Ag = 3.24 nt: Tied; #3 ti 0.8, phi(b) = ectangular All Sides Equal el area: As = 2 clear spacing = Cover = 1.5 in ds: === Axial Load kip	number of bars 4 in^2, Asmax ies with #10 k 0.9, phi(c) 1 (Cover to t 20.32 in^2 at 1.98 in Mx @ Top k-ft	x = 0.08 * Ag bars, #4 wit: = 0.65 cransverse re. rho = 6.27% Mx @ Bot k-ft	= 25.92 in^2 h larger bars inforcement) My @ Top k-ft	My 0 Bot k-ft	1.56
Bar selec Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total ste Minimum co 16 #10 ervice Load No. Case Load No. Case Load No. Case Unead Live Wind EQ Snow 2 Dead Live Wind EQ	tion: Minimum r .01 * Ag = 3.24 nt: Tied; #3 ti 0.8, phi(b) = .ectangular All Sides Equal cel area: As = 2 lear spacing = Cover = 1.5 in dds: === Axial Load kip 	number of bars 4 in^2, Asmax ies with #10 k 0.9, phi(c) 1 (Cover to t 20.32 in^2 at 1.98 in Mx @ Top k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	<pre>% = 0.08 * Ag pars, #4 wit = 0.65 cransverse re rho = 6.27% Mx @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.</pre>	= 25.92 in^2 h larger bars inforcement) My @ Top k-ft - 9.39 3.42 -203.88 0.00 1.28 9.39 8.35 -203.88 0.00	My 0 Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	1.56
Bar selec Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total ste Minimum co 16 #10 ervice Loa Load No. Case Load No. Case Load No. Case Load No. Case Load No. Case Load No. Case Load No. Case Snow 2 Dead Live Wind EQ Snow	tion: Minimum r .01 * Ag = 3.24 nt: Tied; #3 ti 0.8, phi(b) = .ectangular All Sides Equal rel area: As = 2 clear spacing = Cover = 1.5 in ds: === Axial Load kip 	number of bars 4 in^2, Asmax ies with #10 k 0.9, phi(c) 1 (Cover to t 20.32 in^2 at 1.98 in Mx @ Top k-ft	x = 0.08 * Ag bars, #4 wit: = 0.65 cransverse re. rho = 6.27% Mx @ Bot k-ft	= 25.92 in^2 h larger bars inforcement) My @ Top k-ft	My 0 Bot k-ft	1.56
Bar selec Asmin = 0 Confineme phi(a) = Layout: R Fattern: Total ste Minimum c 16 #10 ervice Loa Load No. Case Load No. Case Load Load Live Wind EQ Snow 2 Dead Live Wind EQ Snow	tion: Minimum r .01 * Ag = 3.24 nt: Tied; #3 ti 0.8, phi(b) = .ectangular All Sides Equal el area: As = 2 clear spacing = Cover = 1.5 in ds: === Axial Load kip 	number of bars 4 in^2, Asmax ies with #10 k 0.9, phi(c) 1 (Cover to t 20.32 in^2 at 1.98 in Mx @ Top k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	<pre>% = 0.08 * Ag pars, #4 wit = 0.65 cransverse re rho = 6.27% Mx @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.</pre>	= 25.92 in^2 h larger bars inforcement) My @ Top k-ft - 9.39 3.42 -203.88 0.00 1.28 9.39 8.35 -203.88 0.00	My 0 Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	1.56
Bar selec Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total ste Minimum c 16 #10 ervice Loa Load No. Case Load Live Wind EQ Snow 2 Dead Live Wind EQ Snow 1 Dead Live Wind EQ Snow	tion: Minimum r .01 * Ag = 3.24 nt: Tied; #3 ti 0.8, phi(b) = ectangular All Sides Equal el area: As = 2 lear spacing = Cover = 1.5 in dds: === Axial Load kip 	number of bars 4 in^2, Asmax ies with #10 k 0.9, phi(c) 1 (Cover to t 20.32 in^2 at 1.98 in Mx @ Top k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	<pre>% = 0.08 * Ag pars, #4 wit = 0.65 cransverse re rho = 6.27% Mx @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.</pre>	= 25.92 in^2 h larger bars inforcement) My @ Top k-ft - 9.39 3.42 -203.88 0.00 1.28 9.39 8.35 -203.88 0.00	My 0 Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	1.56
Bar selec Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total ste Minimum co 16 #10 ervice Load No. Case Load No. Case Load Live Wind EQ Snow 2 Dead Live Wind EQ Snow stained I Load Case Dead	tion: Minimum r .01 * Ag = 3.24 nt: Tied; #3 ti 0.8, phi(b) = .ectangular All Sides Equal rel area: As = 2 lear spacing = Cover = 1.5 in dds: == Axial Load kip 	number of bars 4 in^2, Asmax ies with #10 k 0.9, phi(c) 1 (Cover to t 20.32 in^2 at 1.98 in Mx @ Top k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	<pre>% = 0.08 * Ag pars, #4 wit = 0.65 cransverse re rho = 6.27% Mx @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.</pre>	= 25.92 in^2 h larger bars inforcement) My @ Top k-ft - 9.39 3.42 -203.88 0.00 1.28 9.39 8.35 -203.88 0.00	My 0 Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	1.56
Bar selec Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total stee Minimum co 16 #10 ervice Load No. Case Load No. Case Load No. Case Load Live Wind EQ Snow 2 Dead Live Wind EQ Snow 2 Dead Live Wind EQ Snow	tion: Minimum r .01 * Ag = 3.24 nt: Tied; #3 ti 0.8, phi(b) = .ectangular All Sides Equal rel area: As = 2 clear spacing = Cover = 1.5 in ds: === Axial Load kip 249.62 175.12 0.00 0.00 0.00 13.66 249.62 132.67 0.00 0.00 13.66 .oad Factors: Factor (%)	number of bars 4 in^2, Asmax ies with #10 k 0.9, phi(c) 1 (Cover to t 20.32 in^2 at 1.98 in Mx @ Top k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	<pre>% = 0.08 * Ag pars, #4 wit = 0.65 cransverse re rho = 6.27% Mx @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.</pre>	= 25.92 in^2 h larger bars inforcement) My @ Top k-ft - 9.39 3.42 -203.88 0.00 1.28 9.39 8.35 -203.88 0.00	My 0 Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	1.56

U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake + 0.000*Snow U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake + 0.500*Snow STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Lateral\Column Designs\8G\Frame 8 - 8G.col

UЗ	-	1.200*Dead +	1.000*Live	+	0.000*Wind	+	0.000*EarthQuake	+	1.600*Snow
U4	=	1.200*Dead +	0.000*Live	$^{+}$	0.800*Wind	+	0.000*EarthQuake	+	1.600*Snow
U5	=	1.200*Dead +	1.000*Live	$^{+}$	1.600*Wind	+	0.000*EarthQuake	+	0.500*Snow
U6	=	0.900*Dead +	0.000*Live	$^{+}$	1.600*Wind	+	0.000*EarthQuake	+	0.000*Snow
U7	=	1.200*Dead +	0.000*Live	122	0.800*Wind	+	0.000*EarthQuake	$^{+}$	1.600*Snow
U8	=	1.200*Dead +	1.000*Live	122	1.600*Wind	+	0.000*EarthQuake	+	0.500*Snow
U9	=	0.900*Dead +	0.000*Live	722	1.600*Wind	$^{+}$	0.000*EarthQuake	+	0.000*Snow

Factored Loads and Moments with Corresponding Capacities:

Design/Required ratio PhiMn/Mu >= 1.00 NOTE: Each loading combination includes the following cases: First line - at column top Second line - at column bottom


	Load	Pu	Mux		PhiMnx	Dh i Marra	Dhilles /Mar	NA depth	Die James	and the second second	Phi
No.	Load Combo	kip	k-ft	Muy k-ft	k-ft	PhiMny k-ft	PhiMh/Mu	NA deptn in	Dt deptn in	eps_t	Phi
			K LC		K 16						
1	1 U1	349.47	0.00	13.15	-0.00	405.69	30.861	9.53	15.49	0.00188	0.650
2		349.47	0.00	0.00	405.69	0.00	999.999	9.53	15.49	0.00188	0.650
3	1 U2	586.57	0.00	17.38	-0.00	345.80	19.896		15.49	0.00102	0.650
4		586.57	0.00	0.00	345.80	0.00	999.999	11.56	15.49	0.00102	0.650
5	1 U3	496.52	0.00	16.74	-0.00	368.43	22.014	10.74	15.49	0.00133	0.650
6		496.52	0.00	0.00	368.43	0.00	999.999	10.74	15.49	0.00133	0.650
7	1 U4	321.40	0.00	-149.78	0.00	-412.49	2.754	9.33	15.49	0.00198	0.650
8		321.40	0.00	0.00	412.49	0.00	999.999	9.33	15.49	0.00198	0.650
9	1 U5	481.49	0.00	-310.87	0.00	-372.13	1.197	10.61	15.49	0.00138	0.650
10		481.49	0.00	0.00	372.13	0.00	999.999	10.61	15.49	0.00138	0.650
11	1 U6	224.66	0.00	-317.75	0.00	-453.15	1.426	8.10	15.49	0.00273	0.707
12		224.66	0.00	0.00	453.15	0.00	999.999	8.10	15.49	0.00273	0.707
13	1 U7	321.40	0.00	176.42	-0.00	412.49	2.338	9.33	15.49	0.00198	0.650
14		321.40	0.00	0.00	412.49	0.00	999.999	9.33	15.49	0.00198	0.650
15	1 U8	481.49	0.00	341.53	-0.00	372.13	1.090	10.61	15.49	0.00138	0.650
16		481.49	0.00	0.00	372.13	0.00	999.999	10.61	15.49	0.00138	0.650
17	1 U9	224.66	0.00	334.65	-0.00	453.15	1.354	8.10	15.49	0.00273	0.707
18		224.66	0.00	0.00	453.15	0.00	999.999		15.49	0.00273	0.707
19	2 U1	349.47	0.00	13.15	-0.00	405.69	30.861		15.49	0.00188	0.650
20		349.47	0.00	0.00	405.69	0.00	999.999		15.49	0.00188	0.650
21	2 U2	518.65	0.00	25.27	-0.00	362.93	14.363		15.49	0.00125	0.650
22		518.65	0.00	0.00	362.93	0.00	999.999		15.49	0.00125	0.650
23	2 U3	454.07	0.00	21.67	-0.00	380.25	17.551	10.34	15.49	0.00150	0.650
24		454.07	0.00	0.00	380.25	0.00		10.34	15.49	0.00150	0.650
25	2 U4	321.40	0.00	-149.78	0.00	-412.49	2.754	9.33	15.49	0.00198	0.650
26		321.40	0.00	0.00	412.49	0.00	999.999		15.49	0.00198	0.650
27	2 U5	439.04	0.00	-305.94	0.00	-383.93	1.255		15.49	0.00155	0.650
28		439.04	0.00	0.00	383.93	0.00	999.999		15.49	0.00155	0.650
29	2 U6	224.66	0.00	-317.75	0.00	-453.15	1.426		15.49	0.00273	0.707
30		224.66	0.00	0.00	453.15	0.00	999.999		15.49	0.00273	0.707
31	2 U7	321.40	0.00	176.42	-0.00	412.49	2.338		15.49	0.00198	0.650
32		321.40	0.00	0.00	412.49	0.00			15.49	0.00198	0.650
33	2 U8	439.04	0.00	346.46	-0.00	383.93			15.49	0.00155	0.650
34		439.04	0.00	0.00	383.93	0.00	999.999		15.49	0.00155	0.650
35	2 U9	224.66	0.00	334.65	-0.00	453.15	1.354	8.10	15.49	0.00273	0.707
36		224.66	0.00	0.00	453.15	0.00	999.999	8.10	15.49	0.00273	0.707

*** End of output ***

Page 3 02/18/14 02:05 PM

Final Report

Column 8M

Page 1 02/18/14 12:46 PM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Lateral\Column Designs\Frame 8 - 8M.col

				000	000			0									
				00	00			00									
00	000	0000	000	00		00	000	00		00	00	0 000	00000	000	0 000	000	
00	0	00	00	00		00	00	00		00	00	00	00	00	00	00	
00		00	00	00		00	00	00		00	00	00	00	00	00	00	
00	000	00	00	00		00	00	00		00	00	00	00	00	00	00	
	00	0000	000	00		00	00	00		00	00	00	00	00	00	00	
0	00	00		00	00	00	00	00	0	00	00	00	00	00	00	00	
00	000	00		000	000	00	000	00	0	00	0 000	00	00	00	00	00	(TM)

spColumn v4.81 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright © 1988-2012, STRUCTUREPOINT, LLC. All rights reserved

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program.

Page 2 02/18/14 12:46 PM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. F:\SPRING\Lateral\Column Designs\Frame 8	
General Information:	
File Name: F:\SPRING\Lateral\Column Des Project: Lateral System Column: 8M Code: ACI 318-11	igns∖Frame 8 - 8M.col Engineer: ahm Units: English
Run Option: Design Run Axis: Biaxial	Slenderness: Not considered Column Type: Structural
Material Properties:	Solam The Portografa
f'c = 4 ksi Ec = 3605 ksi Ultimate strain = 0.003 in/in Betal = 0.85	fy = 60 ksi Es = 29000 ksi
Section:	
Rectangular: Width = 18 in	Depth = 18 in
Gross section area, Ag = 324 in^2 Ix = 8748 in^4 rx = 5.19615 in Xo = 0 in	Iy = 8748 in^4 ry = 5.19615 in Yo = 0 in
Reinforcement:	
Bar Set: ASTM A615	(in) Area (in^2) Size Diam (in) Area (in^2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.50 0.20 # 5 0.63 0.31 0.88 0.60 # 8 1.00 0.79 1.27 1.27 # 11 1.41 1.56 2.26 4.00
Bar selection: Minimum number of bars Asmin = 0.01 * Ag = 3.24 in^2, Asmax =	
Confinement: Tied; #3 ties with #10 bar phi(a) = 0.8, phi(b) = 0.9, phi(c) =	
Layout: Rectangular Pattern: All Sides Equal (Cover to tra Total steel area: As = 15.24 in^2 at rh Minimum clear spacing = 3.06 in	nsverse reinforcement)
12 #10 Cover = 1.5 in	
Service Loads:	
Load Axial Load Mx @ Top No. Case kip k-ft	
1 Dead 340.47 0.00 Live 170.19 0.00 Wind 0.00 0.00 EQ 0.00 0.00 Snow 48.28 0.00 2 Dead 340.47 0.00 Live 138.39 0.00 Wind 0.00 0.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Sustained Load Factors:	
Load Factor Case (%)	
Dead 100 Live 0 Wind 0 EQ 0 Snow 0	
Load Combinations:	

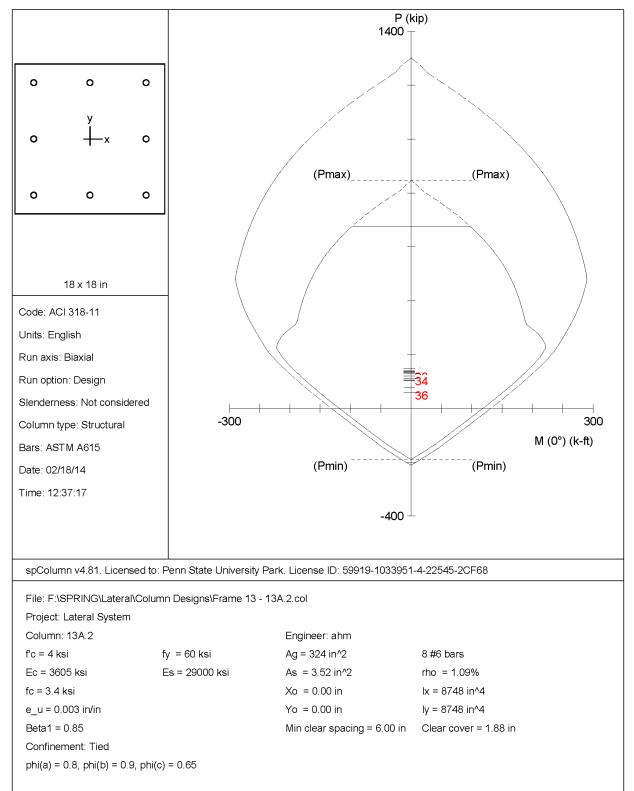
U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake + 0.000*Snow U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake + 0.500*Snow

Page 3 02/18/14 12:46 PM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Lateral\Column Designs\Frame 8 - 8M.col

U3	-	1.200*Dead +	1.000*Live	$^{+}$	0.000*Wind	$^{+}$	0.000*EarthQuake	+	1.600*Snow
U4	-	1.200*Dead +	0.000*Live	$^{+}$	0.800*Wind	$^{+}$	0.000*EarthQuake	+	1.600*Snow
U5	=	1.200*Dead +	1.000*Live	$^{+}$	1.600*Wind	+	0.000*EarthQuake	+	0.500*Snow
U6	=	0.900*Dead +	0.000*Live	\pm	1.600*Wind	+	0.000*EarthQuake	+	0.000*Snow
U7	=	1.200*Dead +	0.000*Live	122	0.800*Wind	+	0.000*EarthQuake	$^{+}$	1.600*Snow
U8	=	1.200*Dead +	1.000*Live	122	1.600*Wind	+	0.000*EarthQuake	+	0.500*Snow
U9	=	0.900*Dead +	0.000*Live	122	1.600*Wind	+	0.000*EarthOuake	+	0.000*Snow

Factored Loads and Moments with Corresponding Capacities:


Design/Required ratio PhiMn/Mu >= 1.00 NOTE: Each loading combination includes the following cases: First line - at column top Second line - at column bottom Load Dr Marco Second Line - At column bottom

	Load	Pu	Mux	Muv	Dhilling	DhaMarr	Dhille /Mar	NA depth I	the share the	eps t	Phi
No.		kip	k-ft	k-ft	k-ft	k-ft	FIIIFII/FIU	in in	in in	eps_c	PIII
1	1 U1	476.66	0.00	-6.15	0.00	-310.45	50.512	10.88	15.49	0.00127	0.650
2		476.66	0.00	0.00	310.45	0.00	999.999	10.88	15.49	0.00127	0.650
3	1 U2	705.01	0.00	-9.73	0.00	-250.71	25.775	13.77	15.49	0.00037	0.650
4		705.01	0.00	0.00	250.71	0.00	999.999	13.77	15.49	0.00037	0.650
5	1 U3	656.00	0.00	-8.45	0.00	-265.24	31.374	13.02	15.49	0.00057	0.650
6		656.00	0.00	0.00	265.24	0.00	999.999	13.02	15.49	0.00057	0.650
7	1 U4	485.81	0.00	-133.69	0.00	-308.29	2.306	10.97	15.49	0.00123	0.650
8		485.81	0.00	0.00	308.29	0.00	999.999	10.97	15.49	0.00123	0.650
9	1 U5	602.89	0.00	-263.96	0.00	-279.40	1.059	12.34	15.49	0.00077	0.650
10		602.89	0.00	0.00	279.40	0.00	999.999	12.34	15.49	0.00077	0.650
11	1 U6	306.42	0.00	-259.80	0.00	-349.46	1.345	9.24	15.49	0.00203	0.650
12		306.42	0.00	0.00	349.46	0.00	999.999	9.24	15.49	0.00203	0.650
13	1 U7	485.81	0.00	122.16	-0.00	308.29	2.524	10.97	15.49	0.00123	0.650
14		485.81	0.00	0.00	308.29	0.00	999.999	10.97	15.49	0.00123	0.650
15	1 U8	602.89	0.00	247.73	-0.00	279.40	1.128	12.34	15.49	0.00077	0.650
16		602.89	0.00	0.00	279.40	0.00	999.999	12.34	15.49	0.00077	0.650
17	1 U9	306.42	0.00	251.89	-0.00	349.46	1.387	9.24	15.49	0.00203	0.650
18		306.42	0.00	0.00	349.46	0.00	999.999	9.24	15.49	0.00203	0.650
19	2 U1	476.66	0.00	-6.15	0.00	-310.45	50.512	10.88	15.49	0.00127	0.650
20		476.66	0.00	0.00	310.45	0.00	999.999	10.88	15.49	0.00127	0.650
21	2 U2	654.13	0.00	-16.13	0.00	-265.75	16.479	13.00	15.49	0.00057	0.650
22		654.13	0.00	0.00	265.75	0.00	999.999	13.00	15.49	0.00057	0.650
23	2 U3	624.20	0.00	-12.45	0.00	-273.81	21.986	12.61	15.49	0.00069	0.650
24		624.20	0.00	0.00	273.81	0.00	999.999	12.61	15.49	0.00069	0.650
25	2 U4	485.81	0.00	-133.69	0.00	-308.29	2.306		15.49	0.00123	0.650
26		485.81	0.00	0.00	308.29	0.00	999.999		15.49	0.00123	0.650
27	2 U5	571.09	0.00	-267.96	0.00	-287.52	1.073		15.49	0.00089	0.650
28		571.09	0.00	0.00	287.52	0.00	999.999		15.49	0.00089	0.650
29	2 U6	306.42	0.00	-259.80	0.00	-349.46	1.345		15.49	0.00203	0.650
30		306.42	0.00	0.00	349.46	0.00	999.999		15.49	0.00203	0.650
31	2 U7	485.81	0.00	122.16	-0.00	308.29	2.524	10.97	15.49	0.00123	0.650
32		485.81	0.00	0.00	308.29	0.00	999.999		15.49	0.00123	0.650
33	2 U8	571.09	0.00	243.73	-0.00	287.52	1.180			0.00089	0.650
34		571.09	0.00	0.00	287.52	0.00	999.999		15.49	0.00089	0.650
35	2 U9	306.42	0.00	251.89	-0.00		1.387		15.49	0.00203	0.650
36		306.42	0.00	0.00	349.46	0.00	999.999	9.24	15.49	0.00203	0.650

*** End of output ***

Column Line 13 Columns

Column 13A.2

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Lateral\Column Designs\Frame 13 - 13A.2.col

Page	1	
02/18/	14	
12:36	PM	

				000	000			0								
				00	00			00								
000	000	000	000	00		00	000	00	00	00	0 000	00000	000	0 000	000	
00	0	00	00	00		00	00	00	00	00	00	00	00	00	00	
00		00	00	00		00	00	00	00	00	00	00	00	00	00	
000	000	00	00	00		00	00	00	00	00	00	00	00	00	00	
	00	0000	000	00		00	00	00	00	00	00	00	00	00	00	
0	00	00		00	00	00	00	00 0	00	00	00	00	00	00	00	
000	000	00		000	0000	00	000	000	00	000 0	00	00	00	00	00	(TM)

spColumn v4.81 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright © 1988-2012, STRUCTUREPOINT, LLC. All rights reserved

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program.

Page 2 02/18/14 12:36 PM

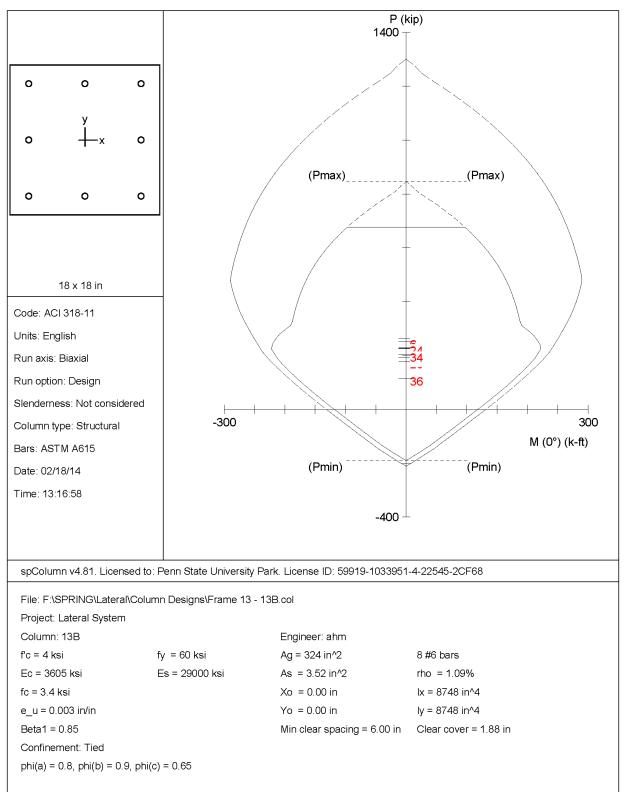
STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Lateral\Column Designs\Frame 13 - 13A.2.col General Information: File Name: F:\SPRING\Lateral\Column Designs\Frame 13 - 13A.2.col Project: Lateral System Column: 13A.2 Engineer: ahm Code: ACI 318-11 Units: English Run Option: Design Slenderness: Not considered Run Axis: Biaxial Column Type: Structural Material Properties: f'c = 4 ksi Ec = 3605 ksi Ultimate strain = 0.003 in/in fy = 60 ksi Es = 29000 ksi Beta1 = 0.85Section: Rectangular: Width = 18 in Depth = 18 in Gross section area, $Ag = 324 \text{ in}^2$ Ix = 8748 in^4 rx = 5.19615 in $Iy = 8748 in^{4}$ ry = 5.19615 in Yo = 0 in Xo = 0 in Reinforcement: Bar Set: ASTM A615 Size Diam (in) Area (in^2) Size Diam (in) Area (in^2) Size Diam (in) Area (in^2) # 4 # 7 0.50 # 5 # 3 0.38 0.11 0.20 0.63 0.31 0.60 1.27 4.00 0.75 0.44 1.00 # 7 # 10 0.88 0.79 1.56 6 # 8 # 11 1.00 6 9 1.41 # 14 1.69 2.25 # 18 2.26 Bar selection: Minimum number of bars Asmin = 0.01 * Ag = 3.24 in^2, Asmax = 0.08 * Ag = 25.92 in^2 Confinement: Tied; #3 ties with #10 bars, #4 with larger bars. phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65 Lavout: Rectangular Pattern: All Sides Equal (Cover to transverse reinforcement) Total steel area: As = 3.52 in^2 at rho = 1.09% Minimum clear spacing = 6.00 in 8 #6 Cover = 1.5 in Service Loads: Axial Load Mx 0 Top Mx 0 Bot kip k-ft k-ft Mx @ Top k-ft My 0 Top k-ft Load Axial Load My 0 Bot k-ft No. Case -----1 Dead 74.75 0.00 0.00 13.26 0.00 0.00 0.00 0.00 0.00 0.00 33.42 5.52 0.00 0.00 0.00 0.00 6.94 -80.34 Live 0.00 Wind 0.00 0.00 0.00 1.86 EO 0.00 10.89 74.75 25.23 5.52 0.00 0.00 0.00 Snow 2 Dead 13.26 Live Wind 0.00 0.00 7.76 0.00 0.00 0.00 0.00 EO 0.00 0.00 0.00 0.00 Snow 10.89 0.00 1.86 Sustained Load Factors: Load Factor Case (%) Dead 100 Live 0 0 Wind 0 ΕQ Snow 0 Load Combinations:

U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake + 0.000*Snow U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake + 0.500*Snow STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Lateral\Column Designs\Frame 13 - 13A.2.col

U3	-	1.200*Dead +	1.000*Live	+	0.000*Wind	+	0.000*EarthQuake	+	1.600*Snow
U4	-	1.200*Dead +	0.000*Live	$^{+}$	0.800*Wind	+	0.000*EarthQuake	+	1.600*Snow
U5	=	1.200*Dead +	1.000*Live	$^{+}$	1.600*Wind	+	0.000*EarthQuake	+	0.500*Snow
U6	=	0.900*Dead +	0.000*Live	$^{+}$	1.600*Wind	+	0.000*EarthQuake	+	0.000*Snow
U7	=	1.200*Dead +	0.000*Live	122	0.800*Wind	+	0.000*EarthQuake	+	1.600*Snow
U8	=	1.200*Dead +	1.000*Live	122	1.600*Wind	+	0.000*EarthQuake	+	0.500*Snow
U9	=	0.900*Dead +	0.000*Live	122	1.600*Wind	+	0.000*EarthOuake	+	0.000*Snow

Factored Loads and Moments with Corresponding Capacities:

Design/Required ratio PhiMn/Mu >= 1.00 NOTE: Each loading combination includes the following cases: First line - at column top Second line - at column bottom Load Du Muy Muy Division


	Load	Pu	Mux	Muy	PhiMnx	PhiMnv	PhiMn/Mu N	IA depth	Dt depth	eps t	Phi
No.		kip	k-ft	k-ft	k-ft	k-ft		in	in		
1	1 U1	104.65	0.00	18.56	-0.00	174.74	9.413	3.92	15.75	0.00905	0.900
2 3		104.65	0.00	0.00	174.74	0.00	999.999	3.92	15.75	0.00905	0.900
3	1 U2	148.62	0.00	27.95	-0.00	195.45	6.994	4.66	15.75	0.00714	0.900
4		148.62	0.00	0.00	195.45	0.00	999.999	4.66	15.75	0.00714	0.900
5	1 U3	140.54	0.00	25.83	-0.00	191.80	7.426	4.52	15.75	0.00746	0.900
6		140.54	0.00	0.00	191.80	0.00	999.999	4.52	15.75	0.00746	0.900
7	1 U4	111.54	0.00	-45.38	0.00	-178.11	3.925	4.03	15.75	0.00872	0.900
8		111.54	0.00	0.00	178.11	0.00	999.999	4.03	15.75	0.00872	0.900
9	1 U5	137.40	0.00	-104.76	0.00	-190.36	1.817	4.46	15.75	0.00758	0.900
10		137.40	0.00	0.00	190.36	0.00	999.999	4.46	15.75	0.00758	0.900
11	1 U6	76.11	0.00	-116.61	0.00	-160.23	1.374	3.47	15.75	0.01061	0.900
12		76.11	0.00	0.00	160.23	0.00	999.999	3.47	15.75	0.01061	0.900
13	1 U7	102.70	0.00	83.16	-0.00	173.78	2.090	3.89	15.75	0.00915	0.900
14		102.70	0.00	0.00	173.78	0.00	999.999	3.89	15.75	0.00915	0.900
15	1 U8	119.73	0.00	152.32	-0.00	182.06	1.195	4.17	15.75	0.00834	0.900
16		119.73	0.00	0.00	182.06	0.00	999.999	4.17	15.75	0.00834	0.900
17	1 U9	58.44	0.00	140.48	-0.00	150.88	1.074	3.21	15.75	0.01171	0.900
18		58.44	0.00	0.00	150.88	0.00	999.999	3.21	15.75	0.01171	0.900
19	2 U1	104.65	0.00	18.56	-0.00	174.74	9.413	3.92	15.75	0.00905	0.900
20		104.65	0.00	0.00	174.74	0.00	999.999	3.92	15.75	0.00905	0.900
21	2 U2	135.51	0.00	29.26	-0.00	189.49	6.476	4.43	15.75	0.00766	0.900
22		135.51	0.00	0.00	189.49	0.00	999.999	4.43	15.75	0.00766	0.900
23	2 U3	132.35	0.00	26.65	-0.00	188.03	7.056	4.38	15.75	0.00779	0.900
24		132.35	0.00	0.00	188.03	0.00	999.999	4.38	15.75	0.00779	0.900
25	2 U4	111.54	0.00	-45.38	0.00	-178.11	3.925	4.03	15.75	0.00872	0.900
26		111.54	0.00	0.00	178.11	0.00	999.999	4.03	15.75	0.00872	0.900
27	2 U5	129.21	0.00	-103.94	0.00	-186.56	1.795	4.32	15.75	0.00793	0.900
28		129.21	0.00	0.00	186.56	0.00	999.999	4.32	15.75	0.00793	0.900
29	2 U6	76.11	0.00	-116.61	0.00	-160.23	1.374	3.47	15.75	0.01061	0.900
30		76.11	0.00	0.00	160.23	0.00	999.999	3.47	15.75	0.01061	0.900
31	2 U7	102.70	0.00	83.16	-0.00	173.78	2.090	3.89	15.75	0.00915	0.900
32		102.70	0.00	0.00	173.78	0.00	999.999	3.89	15.75	0.00915	0.900
33	2 U8	111.54	0.00	153.14	-0.00	178.11	1.163	4.03	15.75	0.00872	0.900
34		111.54	0.00	0.00	178.11	0.00	999.999	4.03	15.75	0.00872	0.900
35	2 U9	58.44	0.00	140.48	-0.00	150.88	1.074	3.21	15.75	0.01171	0.900
36		58.44	0.00	0.00	150.88	0.00	999.999	3.21	15.75	0.01171	0.900

*** End of output ***

Page 3 02/18/14 12:36 PM

Final Report

Column 13B

Page 1 02/18/14 01:14 PM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Lateral\Column Designs\Frame 13 - 13B.col

				000	000			0									
				00	00			00									
000	000	0000	000	00		00	000	00		00	00	0 000	00000	000	0 000	000	
00	0	00	00	00		00	00	00		00	00	00	00	00	00	00	
00		00	00	00		00	00	00		00	00	00	00	00	00	00	
000	000	00	00	00		00	00	00		00	00	00	00	00	00	00	
	00	0000	000	00		00	00	00		00	00	00	00	00	00	00	
0	00	00		00	00	00	00	00	0	00	00	00	00	00	00	00	
000	000	00		000	000	00	000	00	0	00	0 000	00	00	00	00	00	(TM)

spColumn v4.81 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright © 1988-2012, STRUCTUREPOINT, LLC. All rights reserved

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program.

Page 2 02/18/14 01:14 PM

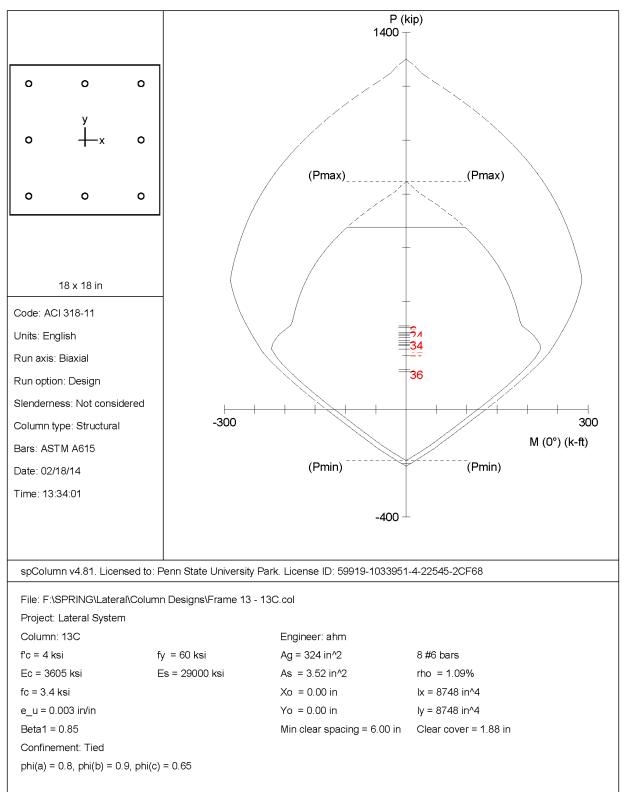
novol Trfor	motion.					
neral Infor		aral\Column I	logiang\Frama	12 - 120 - 001		
Project: L	ateral System					
Column: 1 Code: A	SB CI 318-11		Engineer Units: E			
Run Option: Run Axis:				ess: Not cons ype: Structur		
terial Prop						
f'c = 4 k Ec = 360	si 5 ksi rain = 0.003 .	in/in	fy = 60 Es = 29	0 ksi 9000 ksi		
ction:						
====== Rectangular	: Width = 18 .	in	Depth = 3	18 in		
Gross secti Ix = 8748 rx = 5.196 Xo = 0 in	on area, Ag = in^4 15 in	324 in^2	Iy = 874 ry = 5. Yo = 0	48 in^4 19615 in in		
inforcement						
Bar Set: AS	TM A615	2) Size Dia	am (in) Area	(in^2) Size	Diam (in) Are	a (in^2)
# 3 0 # 6 0 # 9 1	.38 0. .75 0. .13 1. .69 2.	11 # 4 44 # 7	0.50 0.88	0.20 # 5 0.60 # 8	0.63 1.00	0.31 0.79
# 14 1	.69 2.3	25 # 18	1.27 2.26	1.27 # 11 4.00	1.41	1.56
Bar selecti Asmin = 0.0 Confinement	.13 1. .69 2. on: Minimum n 1 * Ag = 3.24 : Tied; #3 ti 8, phi(b) = 9	umber of bars in^2, Asmax es with #10 }	s K = 0.08 * Ag Dars, #4 wit]	= 25.92 in^2		1.56
Bar selecti Asmin = 0.0 Confinement phi(a) = 0. Layout: Rec Pattern: Al Total steel	on: Minimum n 1 * Ag = 3.24 : Tied; #3 ti 8, phi(b) = 1	umber of bars in^2, Asmas es with #10 P 0.9, phi(c) (Cover to t .52 in^2 at p	8 8 = 0.08 * Ag 0 ars, #4 wit) = 0.65 cransverse re:	= 25.92 in^2 h larger bars		1.56
Bar selecti Asmin = 0.0 Confinement phi(a) = 0. Layout: Rec Pattern: Al Total steel	on: Minimum n 1 * Ag = 3.24 : Tied; #3 ti- 8, phi(b) = - tangular l Sides Equal area: As = 3 ar spacing =	umber of bars in^2, Asmas es with #10 P 0.9, phi(c) (Cover to t .52 in^2 at p	8 8 = 0.08 * Ag 0 ars, #4 wit) = 0.65 cransverse re:	= 25.92 in^2 h larger bars		1.56
Bar selecti Asmin = 0.0 Confinement ohi(a) = 0. Layout: Rec Pattern: Al Total steel Minimum cle S #6 Cove rvvice Loads	<pre>on: Minimum n 1 * Ag = 3.24 : Tied, #3 ti- 8, phi(b) = 1 tangular l Sides Equal area: As = 3 ar spacing = r = 1.5 in :</pre>	umber of bars in^2, Asmas es with #10 P 0.9, phi(c) (Cover to t .52 in^2 at p	8 8 = 0.08 * Ag 0 ars, #4 wit) = 0.65 cransverse re:	= 25.92 in^2 h larger bars		1.56
Bar selecti Asmin = 0.0 Confinement phi(a) = 0. Layout: Rec Pattern: Al Total steel Minimum cle 8 #6 Cove rvice Loads Load No. Case	on: Minimum n 1 * Ag = 3.24 : Tied, #3 ti 8, phi(b) = 1 tangular 1 Sides Equal area: As = 3 ar spacing = r = 1.5 in : = Axial Load kip	umber of bars in^2, Asmax es with #10 k 0.9, phi(c) (Cover to t .52 in^2 at p 6.00 in Mx @ Top k-ft	x = 0.08 * Ag bars, #4 with = 0.65 transverse re: tho = 1.09% Mx @ Bot k-ft	= 25.92 in^2 h larger bars inforcement) My @ Top k-ft	My @ Bot k-ft	1.56
Bar selecti Asmin = 0.0 Confinement phi(a) = 0. Layout: Rec Pattern: Al Total steel Minimum cle 8 #6 Cove rvice Loads Load No. Case	<pre>on: Minimum n 1 * Ag = 3.24 : Tied, #3 ti 8, phi(b) = 1 tangular 1 Sides Equal area: As = 3 ar spacing = r = 1.5 in : = Axial Load kip</pre>	umber of bars in^2, Asmax es with #10 k 0.9, phi(c) (Cover to t .52 in^2 at p 6.00 in Mx @ Top k-ft	<pre>x = 0.08 * Ag bars, #4 wit) = 0.65 cransverse re: cho = 1.09% Mx @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.</pre>	= 25.92 in^2 h larger bars inforcement) My @ Top k-ft -5.42 -2.50 -106.71 0.00 -0.28 -5.42 -4.91 -106.71 0.00	My @ Bot k-ft	1.56
Bar selecti Asmin = 0.0 Confinement phi(a) = 0. Layout: Rec Pattern: Al Fotal steel Minimum cle 8 #6 Cove rvice Loads B #6 Cove rvice Loads Load No. Case Load No. Case Load No. Case Load No. Case Snow 2 Dead Live Wind EQ Snow 2 Dead Live Wind EQ Snow 3 Snow	<pre>on: Minimum n 1 * Ag = 3.24 : Tied; #3 ti 8, phi(b) = 1 tangular l Sides Equal area: As = 3 ar spacing = r = 1.5 in : = Axial Load kip 128.26 60.11 0.00 0.4.47 128.26 36.91 0.00 24.47 d Factors:</pre>	<pre>umber of bars in^2, Asmaz es with #10 h 0.9, phi(c) (Cover to t .52 in^2 at n 6.00 in Mx @ Top k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.</pre>	<pre>x = 0.08 * Ag bars, #4 wit) = 0.65 cransverse re: cho = 1.09% Mx @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.</pre>	= 25.92 in^2 h larger bars inforcement) My @ Top k-ft -5.42 -2.50 -106.71 0.00 -0.28 -5.42 -4.91 -106.71 0.00	My @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	1.56
Bar selecti Asmin = 0.0 Confinement phi(a) = 0. Layout: Rec Pattern: Al Total steel Minimum cle 8 #6 Cove rvice Loads Load No. Case Load No. Case Load No. Case Load Live Wind EQ Snow 2 Dead Live Wind EQ Snow	<pre>on: Minimum n 1 * Ag = 3.24 : Tied; #3 ti 8, phi(b) = 0 tangular l Sides Equal area: As = 3 ar spacing = r = 1.5 in : = Axial Load kip</pre>	<pre>umber of bars in^2, Asmaz es with #10 h 0.9, phi(c) (Cover to t .52 in^2 at n 6.00 in Mx @ Top k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.</pre>	<pre>x = 0.08 * Ag bars, #4 wit) = 0.65 cransverse re: cho = 1.09% Mx @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.</pre>	= 25.92 in^2 h larger bars inforcement) My @ Top k-ft -5.42 -2.50 -106.71 0.00 -0.28 -5.42 -4.91 -106.71 0.00	My @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	1.56

U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake + 0.000*Snow U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake + 0.500*Snow STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Lateral\Column Designs\Frame 13 - 13B.col

UЗ	-	1.200*Dead +	1.000*Live	$^{+}$	0.000*Wind	$^{+}$	0.000*EarthQuake	+	1.600*Snow
U4	=	1.200*Dead +	0.000*Live	$^{+}$	0.800*Wind	+	0.000*EarthQuake	+	1.600*Snow
U5	=	1.200*Dead +	1.000*Live	$^{+}$	1.600*Wind	+	0.000*EarthQuake	+	0.500*Snow
U6	=	0.900*Dead +	0.000*Live	$^{+}$	1.600*Wind	\pm	0.000*EarthQuake	+	0.000*Snow
U7	=	1.200*Dead +	0.000*Live	122	0.800*Wind	\pm	0.000*EarthQuake	$^{+}$	1.600*Snow
U8	=	1.200*Dead +	1.000*Live	122	1.600*Wind	+	0.000*EarthQuake	+	0.500*Snow
U9	=	0.900*Dead +	0.000*Live	723	1.600*Wind	+	0.000*EarthQuake	+	0.000*Snow

Factored Loads and Moments with Corresponding Capacities:

Design/Required ratio PhiMn/Mu >= 1.00 NOTE: Each loading combination includes the following cases: First line - at column top Second line - at column bottom


			COLUMN DOLL		20.1 (a.e.		m1 194 (94			8	1000
No.	Load Combo	Pu kip	Mux k-ft	Muy k-ft	PhiMnx k-ft	PhiMny k-ft	PhiMn/Mu	NA depth in	Dt deptn in	eps_t	Phi
NO.											
1	1 U1	179.56	0.00	-7.59	0.00	-208.69	27.503	5.21	15.75	0.00608	0.900
2		179.56	0.00	0.00	208.69	0.00	999.999	5.21	15.75	0.00608	0.900
3	1 U2	262.32	0.00	-10.64	0.00	-214.62	20.163	6.84	15.75	0.00390	0.807
4		262.32	0.00	0.00	214.62	0.00	999.999	6.84	15.75	0.00390	0.807
5	1 U3	253.17	0.00	-9.45	0.00	-217.30	22.989	6.56	15.75	0.00421	0.832
6		253.17	0.00	0.00	217.30	0.00	999.999	6.56	15.75	0.00421	0.832
7	1 U4	193.06	0.00	-92.32	0.00	-213.35	2.311	5.42	15.75	0.00572	0.900
8		193.06	0.00	0.00	213.35	0.00	999.999	5.42	15.75	0.00572	0.900
9	1 U5	226.26	0.00	-179.88	0.00	-222.59	1.237	5.87	15.75	0.00505	0.900
10		226.26	0.00	0.00	222.59	0.00	999.999	5.87	15.75	0.00505	0.900
11	1 U6	115.43	0.00	-175.61	0.00	-180.00	1.025	4.09	15.75	0.00854	0.900
12		115.43	0.00	0.00	180.00	0.00	999.999	4.09	15.75	0.00854	0.900
13	1 U7	193.06	0.00	78.41	-0.00	213.35	2.721	5.42	15.75	0.00572	0.900
14		193.06	0.00	0.00	213.35	0.00	999.999	5.42	15.75	0.00572	0.900
15	1 U8	226.26	0.00	161.59	-0.00	222.59	1.377	5.87	15.75	0.00505	0.900
16		226.26	0.00	0.00	222.59	0.00	999.999	5.87	15.75	0.00505	0.900
17	1 U9	115.43	0.00	165.85	-0.00	180.00	1.085	4.09	15.75	0.00854	0.900
18		115.43	0.00	0.00	180.00	0.00	999.999	4.09	15.75	0.00854	0.900
19	2 U1	179.56	0.00	-7.59	0.00	-208.69	27.503	5.21	15.75	0.00608	0.900
20		179.56	0.00	0.00	208.69	0.00	999.999	5.21	15.75	0.00608	0.900
21	2 U2	225.20	0.00	-14.50	0.00	-222.31	15.331	5.85	15.75	0.00507	0.900
22		225.20	0.00	0.00	222.31	0.00	999.999	5.85	15.75	0.00507	0.900
23	2 U3	229.97	0.00	-11.86	0.00	-223.15	18.813	5.93	15.75	0.00497	0.897
24		229.97	0.00	0.00	223.15	0.00	999.999	5.93	15.75	0.00497	0.897
25	2 U4	193.06	0.00	-92.32	0.00	-213.35	2.311	5.42	15.75	0.00572	0.900
26		193.06	0.00	0.00	213.35	0.00	999.999	5.42	15.75	0.00572	0.900
27	2 U5	203.06	0.00	-182.29	0.00	-216.17	1.186	5.55	15.75	0.00552	0.900
28		203.06	0.00	0.00	216.17	0.00	999.999	5.55	15.75	0.00552	0.900
29	2 U6	115.43	0.00	-175.61	0.00	-180.00	1.025	4.09	15.75	0.00854	0.900
30		115.43	0.00	0.00	180.00	0.00	999.999	4.09	15.75	0.00854	0.900
31	2 U7	193.06	0.00	78.41	-0.00	213.35	2.721	5.42	15.75	0.00572	0.900
32		193.06	0.00	0.00	213.35	0.00	999.999	5.42	15.75	0.00572	0.900
33	2 U8	203.06	0.00	159.18	-0.00	216.17	1.358	5.55	15.75	0.00552	0.900
34		203.06	0.00	0.00	216.17	0.00	999.999	5.55	15.75	0.00552	0.900
35	2 U9	115.43	0.00	165.85	-0.00	180.00	1.085	4.09	15.75	0.00854	0.900
36		115.43	0.00	0.00	180.00	0.00	999.999	4.09	15.75	0.00854	0.900

*** End of output ***

Page 3 02/18/14 01:14 PM

Final Report

Column 13C

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Lateral\Column Designs\Frame 13 - 13C.col

Page	1	
02/18.	/14	
01:32	PM	

				000	000			0									
				00	00			00									
000	000	000	000	00		00	000	00		00	00	0 000	00000	000	0 000	000	
00	0	00	00	00		00	00	00		00	00	00	00	00	00	00	
00		00	00	00		00	00	00		00	00	00	00	00	00	00	
000	000	00	00	00		00	00	00		00	00	00	00	00	00	00	
	00	0000	000	00		00	00	00		00	00	00	00	00	00	00	
0	00	00		00	00	00	00	00	0	00	00	00	00	00	00	00	
000	000	00		000	000	00	000	000	С	00	0 000	00	00	00	00	00	(TM)

spColumn v4.81 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright © 1988-2012, STRUCTUREPOINT, LLC. All rights reserved

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program.

Page 2 02/18/14 01:32 PM

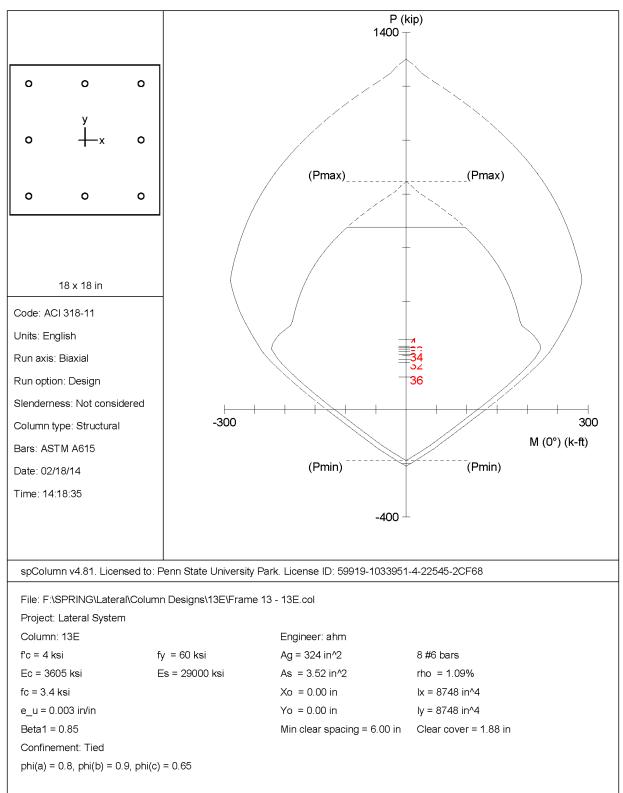
:\SPRING\Lat						
eneral Infor						
File Name:			Designs\Frame	13 - 13C.col		
Column: 1 Code: A	3C		Engineer Units: E			
Run Option: Run Axis:				ess: Not cons ype: Structur		
aterial Prop						
f'c = 4 k Ec = 360 Ultimate st Betal = 0.8	si 5 ksi rain = 0.003	in/in	fy = 60 Es = 2	0 ksi 9000 ksi		
ection:						
Rectangular	: Width = 18	in	Depth = 3	18 in		
Gross secti Ix = 8748 rx = 5.196 Xo = 0 in		324 in^2	Iy = 874 ry = 5.2 Yo = 0	48 in^4 19615 in in		
einforcement						
Bar Set: AS Size Diam (TM A615	2) Size Dia	am (in) Area	(in^2) Size	: Diam (in) Are	a (in^2)
# 3 0 # 6 0	.38 0. .75 0.	11 # 4	0.50	0.20 # 5	0.63	0.31
# 9 1 # 14 1	.13 1. .69 2.	44 # 7 00 # 10 25 # 18	0.88 1.27 2.26	0.60 # 8 1.27 # 11 4.00	1.00 1.41	0.79 1.56
Bar selecti Asmin = 0.0	on: Minimum n 1 * Ag = 3.24	umber of bars in^2, Asmas	s K = 0.08 * Ag	= 25.92 in^2		0.79 1.56
Bar selecti Asmin = 0.0 Confinement	on: Minimum n 1 * Ag = 3.24	umber of bars in^2, Asmax es with #10 }	s K = 0.08 * Ag pars, #4 wit]	= 25.92 in^2		0.79 1.56
Bar selecti Asmin = 0.0 Confinement phi(a) = 0. Layout: Rec Pattern: Al Total steel	on: Minimum n 1 * Ag = 3.24 : Tied; #3 ti 8, phi(b) = tangular	umber of bars in^2, Asmas es with #10 } 0.9, phi(c) (Cover to 1 .52 in^2 at 3	s s = 0.08 * Ag pars, #4 wit) = 0.65 cransverse re:	= 25.92 in^2 h larger bars		0.79 1.56
Bar selecti Asmin = 0.0 Confinement phi(a) = 0. Layout: Rec Pattern: Al Total steel	on: Minimum n 1 * Ag = 3.24 : Tied; #3 ti 8, phi(b) = tangular 1 Sides Equal area: As = 3 ar spacing =	umber of bars in^2, Asmas es with #10 } 0.9, phi(c) (Cover to 1 .52 in^2 at 3	s s = 0.08 * Ag pars, #4 wit) = 0.65 cransverse re:	= 25.92 in^2 h larger bars		0.79 1.56
Bar selecti Asmin = 0.0 Confinement phi(a) = 0. Layout: Rec Pattern: Al Total steel Minimum cle	on: Minimum n 1 * Ag = 3.24 : Tied; #3 ti 8, phi(b) = tangular 1 Sides Equal area: As = 3 ar spacing = r = 1.5 in	umber of bars in^2, Asmas es with #10 } 0.9, phi(c) (Cover to 1 .52 in^2 at 3	s s = 0.08 * Ag pars, #4 wit) = 0.65 cransverse re:	= 25.92 in^2 h larger bars		0.79 1.56
Bar selecti Asmin = 0.0 Confinement phi(a) = 0. Layout: Rec Pattern: Al Total steel Minimum cle 8 #6 Cove ervice Loads Load No. Case	on: Minimum n 1 * Ag = 3.24 : Tied; #3 ti 8, phi(b) = tangular 1 Sides Equal area: As = 3 ar spacing = r = 1.5 in : = Axial Load kip	umber of bars in^2, Asman es with #10 1 0.9, phi(c) (Cover to 1 .52 in^2 at 1 6.00 in Mx @ Top k-ft	s	= 25.92 in^2 h larger bars inforcement) My @ Top k-ft	My @ Bot k-ft	0.79 1.56
Bar selecti Asmin = 0.0 Confinement phi(a) = 0. Layout: Rec Pattern: Al Total steel Minimum cle 8 #6 Cove ervice Loads Load No. Case Load No. Case 1 Dead Live Wind EQ Dead Live Wind EQ	on: Minimum n 1 * Ag = 3.24 : Tied; #3 ti 8, phi(b) = tangular 1 Sides Equal area: As = 3 ar spacing = r = 1.5 in : = Axial Load kip 	umber of bars in^2, Asmai es with #10 1 0.9, phi(c) (Cover to 1 .52 in^2 at 1 6.00 in Mx @ Top k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	<pre>x = 0.08 * Ag bars, #4 wit) = 0.65 transverse re: tho = 1.09% Mx @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.</pre>	= 25.92 in^2 h larger bars inforcement) My @ Top k-ft -0.66 -0.80 -108.53 0.00 -0.85 -0.66 -2.20 -108.53 0.00	My @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.79
Bar selecti Asmin = 0.0 Confinement phi(a) = 0. Layout: Rec Pattern: Al Total steel Minimum cle 8 #6 Cove ervice Loads No. Case Load No. Case 1 Dead Live Wind EQ Snow 2 Dead Live Wind EQ Snow	on: Minimum n 1 * Ag = 3.24 : Tied; #3 ti 8, ph1(b) = tangular 1 Sides Equal area: As = 3 ar spacing = r = 1.5 in : Axial Load kip 	umber of bars in^2, Asmai es with #10 1 0.9, phi(c) (Cover to 1 .52 in^2 at 1 6.00 in Mx @ Top k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	<pre>s s x = 0.08 * Ag bars, #4 wit] = 0.65 cransverse re: cho = 1.09% Mx @ Bot k-ft 0.00 0</pre>	= 25.92 in^2 h larger bars inforcement) My @ Top k-ft -0.66 -0.80 -108.53 0.00 -0.85 -0.66 -2.20 -108.53 0.00	My @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.79
Bar selecti Asmin = 0.0 Confinement phi(a) = 0. Layout: Rec Pattern: Al Total steel Minimum cle 8 #6 Cove ervice Loads Load No. Case Load No. Case 1 Dead EQ Snow 2 Dead Live Wind EQ Snow 2 Dead Live Wind EQ Snow	on: Minimum n 1 * Ag = 3.24 : Tied; #3 ti 8, phi(b) = tangular 1 Sides Equal area: As = 3 ar spacing = r = 1.5 in : Axial Load kip 	umber of bars in^2, Asmai es with #10 1 0.9, phi(c) (Cover to 1 .52 in^2 at 1 6.00 in Mx @ Top k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	<pre>x = 0.08 * Ag bars, #4 wit) = 0.65 transverse re: tho = 1.09% Mx @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.</pre>	= 25.92 in^2 h larger bars inforcement) My @ Top k-ft -0.66 -0.80 -108.53 0.00 -0.85 -0.66 -2.20 -108.53 0.00	My @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.79
Bar selecti Asmin = 0.0 Confinement phi(a) = 0. Layout: Rec Pattern: Al Total steel Minimum cle 8 #6 Cove ervice Loads Load Load Live Wind EQ Snow 2 Dead Live Wind EQ Snow ustained Loa Case	on: Minimum n 1 * Ag = 3.24 : Tied; #3 ti 8, phi(b) = tangular 1 Sides Equal area: As = 3 ar spacing = r = 1.5 in : = Axial Load kip 	umber of bars in^2, Asmai es with #10 1 0.9, phi(c) (Cover to 1 .52 in^2 at 1 6.00 in Mx @ Top k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	<pre>x = 0.08 * Ag bars, #4 wit) = 0.65 transverse re: tho = 1.09% Mx @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.</pre>	= 25.92 in^2 h larger bars inforcement) My @ Top k-ft -0.66 -0.80 -108.53 0.00 -0.85 -0.66 -2.20 -108.53 0.00	My @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.79
Bar selecti Asmin = 0.0 Confinement phi(a) = 0. Layout: Rec Pattern: Al Total steel Minimum cle 8 #6 Cove ervice Loads Load No. Case Load Live Wind EQ Snow 2 Dead Live Wind EQ Snow 2 Dead Live Wind EQ Snow	on: Minimum n 1 * Ag = 3.24 : Tied; #3 ti 8, phi(b) = tangular 1 Sides Equal area: As = 3 ar spacing = r = 1.5 in : = Axial Load kip 	umber of bars in^2, Asmai es with #10 1 0.9, phi(c) (Cover to 1 .52 in^2 at 1 6.00 in Mx @ Top k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	<pre>x = 0.08 * Ag bars, #4 wit) = 0.65 transverse re: tho = 1.09% Mx @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.</pre>	= 25.92 in^2 h larger bars inforcement) My @ Top k-ft -0.66 -0.80 -108.53 0.00 -0.85 -0.66 -2.20 -108.53 0.00	My @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.79
Bar selecti Asmin = 0.0 Confinement phi(a) = 0. Layout: Rec Pattern: Al Total steel Minimum cle 8 #6 Cove ervice Loads Load No. Case Load No. Case 1 Dead Live Wind EQ Snow 2 Dead Live Wind EQ Snow ustained Loa	on: Minimum n 1 * Ag = 3.24 : Tied; #3 ti 8, phi(b) = tangular 1 Sides Equal area: As = 3 ar spacing = r = 1.5 in : Axial Load kip 	umber of bars in^2, Asmai es with #10 1 0.9, phi(c) (Cover to 1 .52 in^2 at 1 6.00 in Mx @ Top k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	<pre>x = 0.08 * Ag bars, #4 wit) = 0.65 transverse re: tho = 1.09% Mx @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.</pre>	= 25.92 in^2 h larger bars inforcement) My @ Top k-ft -0.66 -0.80 -108.53 0.00 -0.85 -0.66 -2.20 -108.53 0.00	My @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.79

U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake + 0.000*Snow U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake + 0.500*Snow STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Lateral\Column Designs\Frame 13 - 13C.col

U3 = 1.200*Dead + 1.000*Live + 0.000*Wind + 0.000*EarthQuake + 1.600*Snow U4 = 1.200*Dead + 0.000*Live + 0.800*Wind + 0.000*EarthQuake + 1.600*Snow U5 = 1.200*Dead + 1.000*Live + 1.600*Wind + 0.000*EarthQuake + 0.500*Snow U6 = 0.900*Dead + 0.000*Live + 1.600*Wind + 0.000*EarthQuake + 0.000*Snow U7 = 1.200*Dead + 0.000*Live - 0.800*Wind + 0.000*EarthQuake + 1.600*Snow U8 = 1.200*Dead + 1.000*Live - 1.600*Wind + 0.000*EarthQuake + 0.500*Snow U9 = 0.900*Dead + 0.000*Live - 1.600*Wind + 0.000*EarthQuake + 0.500*Snow U9 = 0.900*Dead + 0.000*Live - 1.600*Wind + 0.000*EarthQuake + 0.000*Snow

Factored Loads and Moments with Corresponding Capacities:

Design/Required ratio PhiMn/Mu >= 1.00 NOTE: Each loading combination includes the following cases: First line - at column top Second line - at column bottom


1221	Load	Pu	Mux	Muy	PhiMnx		PhiMn/Mu	NA depth		eps_t	Phi
No.	Combo	kip	k-ft	k-ft	k-ft	k-ft		in	in		
1	1 U1	223.82	0.00	-0.92	0.00	-221.93	240.181	5.83	15.75	0.00510	0.900
2		223.82	0.00	0.00	221,93	0.00	999.999	5.83	15.75	0.00510	0.900
3	1 U2	310.46	0.00	-2.50	0.00	-190.78	76.404	9.11	15.75	0.00218	0.660
4		310.46	0.00	0.00	190.78	0.00	999.999	9.11	15.75	0.00218	0.660
5	1 U3	303.82	0.00	-2.95	0.00	-194.78	65.983	8.73	15.75	0.00241	0.679
6		303.82	0.00	0.00	194.78	0.00	999.999	8.73	15.75	0.00241	0.679
7	1 U4	241.07	0.00	-88.98	0.00	-220.51	2.478	6.21	15.75	0.00461	0.867
8		241.07	0.00	0.00	220.51	0.00	999.999	6.21	15.75	0.00461	0.867
9	1 U5	275.89	0.00	-175.66	0.00	-209.89	1.195	7.34	15.75	0.00344	0.767
10		275.89	0.00	0.00	209.89	0.00	999.999	7.34	15.75	0.00344	0.767
11	1 U6	148.29	0.00	-174.24	0.00	-195.30	1.121	4.65	15.75	0.00716	0.900
12		148.29	0.00	0.00	195.30	0.00	999.999	4.65	15.75	0.00716	0.900
13	1 U7	236.67	0.00	84.67	-0.00	221.59	2.617	6.10	15.75	0.00475	0.879
14		236.67	0.00	0.00	221.59	0.00	999.999	6.10	15.75	0.00475	0.879
15	1 U8	267.09	0.00	171.63	-0.00	213.12	1.242	7.01	15.75	0.00374	0.793
16		267.09	0.00	0.00	213.12	0.00	999.999	7.01	15.75	0.00374	0.793
17	1 U9	139.48	0.00	173.05	-0.00	191.31	1.106	4.50	15.75	0.00750	0.900
18		139.48	0.00	0.00	191.31	0.00	999.999	4.50	15.75	0.00750	0.900
19	2 U1	223.82	0.00	-0.92	0.00	-221.93	240.181	5.83	15.75	0.00510	0.900
20		223.82	0.00	0.00	221.93	0.00	999.999	5.83	15.75	0.00510	0.900
21	2 U2	280.30	0.00	-4.74	0.00	-207.67	43.840	7.53	15.75	0.00327	0.753
22		280.30	0.00	0.00	207.67	0.00	999.999	7.53	15.75	0.00327	0.753
23	2 U3	284.97	0.00	-4.35	0.00	-205.26	47.164	7.75	15.75	0.00310	0.738
24		284.97	0.00	0.00	205.26	0.00	999.999	7.75	15.75	0.00310	0.738
25	2 U4	241.07	0.00	-88.98	0.00	-220.51	2.478	6.21	15.75	0.00461	0.867
26		241.07	0.00	0.00	220.51	0.00	999.999	6.21	15.75	0.00461	0.867
27	2 U5	257.04	0.00	-177.06	0.00	-216.20	1.221	6.67	15.75	0.00408	0.822
28		257.04	0.00	0.00	216.20	0.00	999.999	6.67	15.75	0.00408	0.822
29	2 U6	148.29	0.00	-174.24	0.00	-195.30	1.121	4.65	15.75	0.00716	0.900
30		148.29	0.00	0.00	195.30	0.00	999.999	4.65	15.75	0.00716	0.900
31	2 U7	236.67	0.00	84.67	-0.00	221.59	2.617	6.10	15.75	0.00475	0.879
32		236.67	0.00	0.00	221.59	0.00	999.999	6.10	15.75	0.00475	0.879
33	2 U8	248.24	0.00	170.23	-0.00	218.65	1.284	6.41	15.75		0.846
34		248.24	0.00	0.00	218.65	0.00	999.999	6.41	15.75	0.00437	0.846
35	2 U9	139.48	0.00	173.05	-0.00	191.31	1.106		15.75		0.900
36		139.48	0.00	0.00	191.31	0.00	999.999	4.50	15.75	0.00750	0.900

*** End of output ***

Page 3 02/18/14 01:32 PM

Final Report

Column 13E

Page 1 02/18/14 02:17 PM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Lateral\Column Designs\13E\Frame 13 - 13E.col

				000	000			0									
				00	00			00									
000	000	000	000	00		000	000	00		00	00	0 000	00000	000	0 000	000	
00	0	00	00	00		00	00	00		00	00	00	00	00	00	00	
00		00	00	00		00	00	00		00	00	00	00	00	00	00	
000	000	00	00	00		00	00	00		00	00	00	00	00	00	00	
	00	0000	000	00		00	00	00		00	00	00	00	00	00	00	
0	00	00		00	00	00	00	00	0	00	00	00	00	00	00	00	
000	000	00		000	000	000	000	00	0	000	0 000	00	00	00	00	00	(TM)

spColumn v4.81 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright © 1988-2012, STRUCTUREPOINT, LLC. All rights reserved

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program.

Page 2 02/18/14 02:17 PM

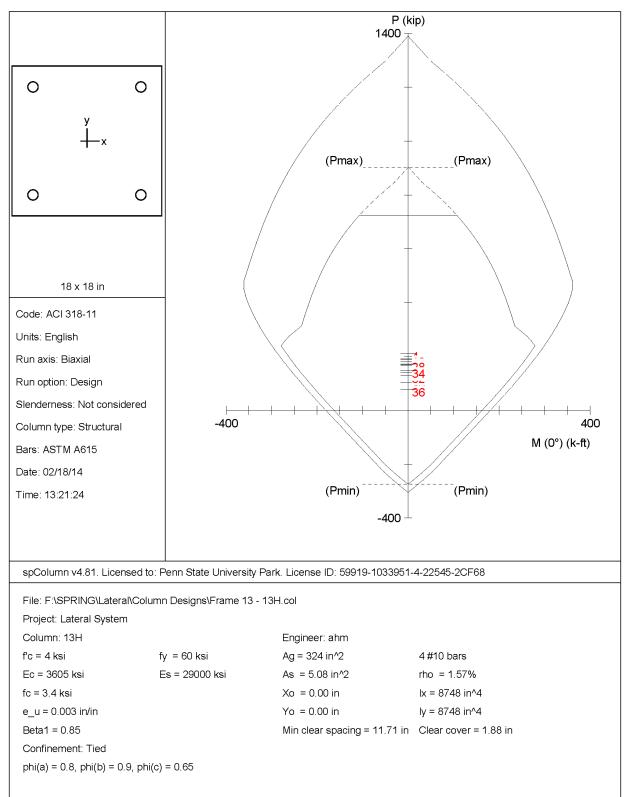
STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Lateral\Column Designs\13E\Frame 13 - 13E.col General Information: File Name: F:\SPRING\Lateral\Column Designs\13E\Frame 13 - 13E.col Project: Lateral System Column: 13E Engineer: ahm Code: ACI 318-11 Units: English Run Option: Design Slenderness: Not considered Run Axis: Biaxial Column Type: Structural Material Properties: f'c = 4 ksi Ec = 3605 ksi Ultimate strain = 0.003 in/in fy = 60 ksi Es = 29000 ksi Beta1 = 0.85Section: Rectangular: Width = 18 in Depth = 18 in Gross section area, $Ag = 324 \text{ in}^2$ Ix = 8748 in^4 rx = 5.19615 in $Iy = 8748 in^{4}$ ry = 5.19615 in Yo = 0 in Xo = 0 in Reinforcement: Bar Set: ASTM A615 Size Diam (in) Area (in^2) Size Diam (in) Area (in^2) Size Diam (in) Area (in^2) # 4 # 7 0.38 0.50 # 5 # 3 0.11 0.20 0.63 0.31 0.60 1.27 4.00 0.75 0.44 1.00 # 7 # 10 0.88 0.79 1.56 6 # 8 # 11 1.00 6 9 1.41 # 14 1.69 2.25 # 18 2.26 Bar selection: Minimum number of bars Asmin = 0.01 * Ag = 3.24 in^2, Asmax = 0.08 * Ag = 25.92 in^2 Confinement: Tied; #3 ties with #10 bars, #4 with larger bars. phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65 Lavout: Rectangular Pattern: All Sides Equal (Cover to transverse reinforcement) Total steel area: As = 3.52 in^2 at rho = 1.09% Minimum clear spacing = 6.00 in 8 #6 Cover = 1.5 in Service Loads: Axial Load Mx @ Top Mx @ Bot kip k-ft k-ft My 0 Top k-ft Load Axial Load My 0 Bot k-ft No. Case -----1 Dead 132.52 0.00 0.00 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 60.67 0.00 Live 0.00 0.10 Wind 0.00 -111.65 0.00 0.00 0.00 0.27 EO 0.00 Snow 9.81 132.52 2 Dead 0.69 Live Wind 40.63 0.00 0.00 0.00 0.00 0.00 0.00 1.72 -111.65 0.00 EO 0.00 0.00 0.00 0.00 Snow 9.81 0.00 Sustained Load Factors: Load Factor Case (%) Dead 100 Live 0 0 Wind 0 ΕQ Snow 0 Load Combinations:

U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake + 0.000*Snow U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake + 0.500*Snow STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Lateral\Column Designs\13E\Frame 13 - 13E.col

U3	=	1.200*Dead +	1.000*Live	+	0.000*Wind	+	0.000*EarthQuake	+	1.600*Snow
U4	-	1.200*Dead +	0.000*Live	$^{+}$	0.800*Wind	+	0.000*EarthQuake	+	1.600*Snow
U5	=	1.200*Dead +	1.000*Live	$^{+}$	1.600*Wind	+	0.000*EarthQuake	+	0.500*Snow
U6	-	0.900*Dead +	0.000*Live	$^{+}$	1.600*Wind	+	0.000*EarthQuake	+	0.000*Snow
U7	=	1.200*Dead +	0.000*Live	122	0.800*Wind	+	0.000*EarthQuake	$^{+}$	1.600*Snow
U8	=	1.200*Dead +	1.000*Live	12	1.600*Wind	+	0.000*EarthQuake	+	0.500*Snow
U9	=	0.900*Dead +	0.000*Live	122	1.600*Wind	+	0.000*EarthQuake	+	0.000*Snow

Factored Loads and Moments with Corresponding Capacities:

Design/Required ratio PhiMn/Mu >= 1.00 NOTE: Each loading combination includes the following cases: First line - at column top Second line - at column bottom Load Du Muy Muy Division


	Load	Pu	Mux	Muy	PhiMnx	DhiMny	DhiMn/Mu	NA depth	Dt denth	eps t	Phi
No.		kip	k-ft	k-ft	k-ft	k-ft	r minin riu	in in	in in	eps_c	E II L
1	1 U1	185.53	0.00	0.97	-0.00	211.10	218.532	5.31	15.75	0.00589	0.900
2		185.53	0.00	0.00	211.10	0.00	999.999	5.31	15.75	0.00589	0.900
3	1 U2	261.00	0.00	1.12	-0.00	215.02	191.469	6.80	15.75	0.00395	0.810
4		261.00	0.00	0.00	215.02	0.00	999.999	6.80	15.75	0.00395	0.810
5	1 U3	235.39	0.00	1.36	-0.00	221.89	163.158	6.06		0.00479	0.882
6		235.39	0.00	0.00	221.89	0.00	999.999	6.06	15.75	0.00479	0.882
7	1 U4	174.72	0.00	-88.06	0.00	-206.69	2.347	5.12	15.75	0.00623	0.900
8		174.72	0.00	0.00	206.69	0.00	999.999	5.12	15.75	0.00623	0.900
9	1 U5	224.60	0.00	-177.58	0.00	-222.14	1.251	5.84	15.75	0.00509	0.900
10		224.60	0.00	0.00	222.14	0.00	999.999	5.84	15.75	0.00509	0.900
11	1 U6	119.27	0.00	-178.02	0.00	-181.84	1.021	4.16	15.75	0.00836	0.900
12		119.27	0.00	0.00	181.84	0.00	999.999	4.16	15.75	0.00836	0.900
13	1 U7	174.72	0.00	90.58	-0.00	206.69	2.282	5.12	15.75	0.00623	0.900
14		174.72	0.00	0.00	206.69	0.00	999.999	5.12	15.75	0.00623	0.900
15	1 U8	224.60	0.00	179.71	-0.00	222.14	1.236	5.84	15.75	0.00509	0.900
16		224.60	0.00	0.00	222.14	0.00	999.999	5.84	15.75	0.00509	0.900
17	1 U9	119.27	0.00	179.26	-0.00	181.84	1.014	4.16	15.75	0.00836	0.900
18		119.27	0.00	0.00	181.84	0.00	999.999	4.16	15.75	0.00836	0.900
19	2 U1	185.53	0.00	0.97	-0.00	211.10	218.532	5.31	15.75	0.00589	0.900
20		185.53	0.00	0.00	211.10	0.00	999.999		15.75	0.00589	0.900
21	2 U2	228.94	0.00	3.72	-0.00	223.32	60.113		15.75	0.00500	0.900
22		228.94	0.00	0.00	223.32	0.00	999.999	5.90	15.75	0.00500	0.900
23	2 U3	215.35	0.00	2.98	-0.00	219.60	73.692		15.75	0.00527	0.900
24		215.35	0.00	0.00	219.60	0.00	999.999		15.75	0.00527	0.900
25	2 U4	174.72	0.00	-88.06	0.00	-206.69	2.347		15.75	0.00623	0.900
26		174.72	0.00	0.00	206.69	0.00	999.999	5.12	15.75	0.00623	0.900
27	2 U5	204.56	0.00	-175.96	0.00	-216.59	1.231	5.57	15.75	0.00548	0.900
28		204.56	0.00	0.00	216.59	0.00	999.999	5.57	15.75	0.00548	0.900
29	2 U6	119.27	0.00	-178.02	0.00	-181.84	1.021	4.16	15.75	0.00836	0.900
30		119.27	0.00	0.00	181.84	0.00	999.999		15.75	0.00836	0.900
31	2 U7	174.72	0.00	90.58	-0.00	206.69	2.282		15.75	0.00623	0.900
32		174.72	0.00	0.00	206.69	0.00	999.999	5.12	15.75	0.00623	0.900
33	2 U8	204.56	0.00	181.33	-0.00	216.59	1.195			0.00548	0.900
34		204.56	0.00	0.00	216.59	0.00	999.999			0.00548	0.900
35	2 U9	119.27	0.00	179.26	-0.00	181.84	1.014			0.00836	0.900
36		119.27	0.00	0.00	181.84	0.00	999.999	4.16	15.75	0.00836	0.900

*** End of output ***

Page 3 02/18/14 02:17 PM

Final Report

Column 13H

Page 1 02/18/14 01:20 PM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Lateral\Column Designs\Frame 13 - 13H.col

				000	000			0									
				00	00			00									
00	000	000	000	00		00	000	00		00	00	0 000	00000	000	0 000	000	
00	0	00	00	00		00	00	00		00	00	00	00	00	00	00	
00		00	00	00		00	00	00		00	00	00	00	00	00	00	
00	000	00	00	00		00	00	00		00	00	00	00	00	00	00	
	00	0000	000	00		00	00	00		00	00	00	00	00	00	00	
0	00	00		00	00	00	00	00	0	00	00	00	00	00	00	00	
00	000	00		000	000	00	000	00	0	00	0 000	00	00	00	00	00	(TM)

spColumn v4.81 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright © 1988-2012, STRUCTUREPOINT, LLC. All rights reserved

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program.

Licensed to:	NT - spColumn Penn State Un iteral\Column I	niversity Park		: 59919-10339	51-4-22545-2CF(58
General Info						
Project:	F:\SPRING\Lat Lateral Syster 13H ACI 318-11)esigns\Frame Engineer Units: E:	: ahm		
Run Option Run Axis:	1: Design		Slendern	ess: Not cons ype: Structur		
Material Pro	perties:			5.5		
$\begin{array}{l} f'c &= 4\\ Ec &= 36\\ Ultimate s\\ Betal = 0. \end{array}$	ksi 505 ksi strain = 0.003	in/in	fy = 6 Es = 2	0 ksi 9000 ksi		
ection:	ar: Width = 18	in	Depth =	18 in		
	ion area, Ag =		pebru =	10 111		
IX = 8748 IX = 5.19 Xo = 0 in	8 in^4 9615 in	= 324 IN 2	Iy = 87 ry = 5. Yo = 0	19615 in		
einforcemer Bar Set: A	STM A615	() Cipo Dia	um (in) Arco	(in^2)	Diam (in) Area	110021
					Diam (in) Area	
# 6 # 9 # 14	0.75 0 1.13 1 1.69 2	44 # 7 00 # 10 25 # 18	0.88 1.27 2.26	0.60 # 8 1.27 # 11 4.00	0.63 1.00 1.41	0.79 1.56
	ion: Minimum n 01 * Ag = 3.24			= 25.92 in^2		
	nt: Tied; #3 t:).8, phi(b) =			h larger bars		
Total stee	ectangular All Sides Equa 21 area: As = 5 .ear spacing =	5.08 in^2 at r		inforcement)		
4 #10 Cc	over = 1.5 in					
ervice Load						
Load No. Case	Axial Load kip					
1 Dead Live Wind EQ	$\begin{array}{c} 100.85\\ 53.76\\ 7.71\\ 0.00\\ 8.77\\ 100.85\\ 34.54\\ 7.71\\ 0.00\end{array}$	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	-1.65 -0.64 -117.02 0.00	0.00 0.00 0.00 0.00	
2 Dead Live Wind	8.77 100.85 34.54 7.71	0.00 0.00 0.00	0.00	-0.20 -1.65 -1.74 -117.02	0.00 0.00 0.00	
Snow	8.77	0.00 0.00	0.00	0.00 -0.20		
	ad Factors:					
Load Case	(%)					
Dead Live Wind EQ	100 0 0					
Snow oad Combina	0 ations:					

Page 2 02/18/14 01:20 PM

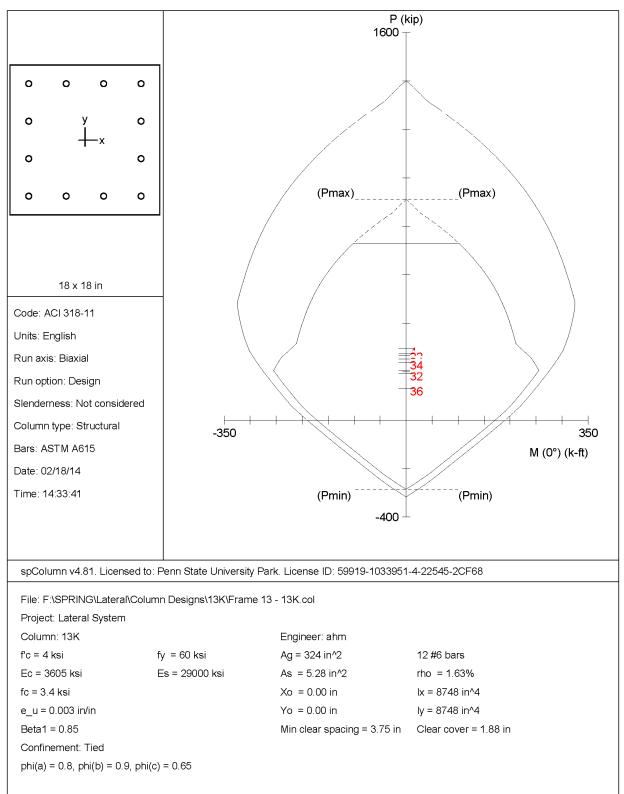
U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake + 0.000*Snow U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake + 0.500*Snow

Page 3 02/18/14 01:20 PM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Lateral\Column Designs\Frame 13 - 13H.col

U3	-	1.200*Dead +	1.000*Live	$^{+}$	0.000*Wind	$^{+}$	0.000*EarthQuake	+	1.600*Snow
U4	=	1.200*Dead +	0.000*Live	$^{+}$	0.800*Wind	$^{+}$	0.000*EarthQuake	+	1.600*Snow
U5	=	1.200*Dead +	1.000*Live	$^{+}$	1.600*Wind	+	0.000*EarthQuake	+	0.500*Snow
U6	-	0.900*Dead +	0.000*Live	$^{+}$	1.600*Wind	+	0.000*EarthQuake	+	0.000*Snow
U7	=	1.200*Dead +	0.000*Live	122	0.800*Wind	+	0.000*EarthQuake	$^{+}$	1.600*Snow
U8	=	1.200*Dead +	1.000*Live	122	1.600*Wind	+	0.000*EarthQuake	+	0.500*Snow
U9	=	0.900*Dead +	0.000*Live	722	1.600*Wind	$^{+}$	0.000*EarthQuake	+	0.000*Snow

Factored Loads and Moments with Corresponding Capacities:


Design/Required ratio PhiMn/Mu >= 1.00 NOTE: Each loading combination includes the following cases: First line - at column top Second line - at column bottom Load Du Muy Muy Division

	Load	Pu	Mux	Muv	PhiMnx	DhaMars	Dhille /Mar	NA depth	Dt. Jonth	eps t	Phi
No.		kip	k-ft	k-ft	k-ft	k-ft	PHIMI/MU	in in	in depth	eps_t	PIII
			K LC								
1	1 U1	141.19	0.00	-2.31	0.00	-236.06	102.192	4.33	15.49	0.00774	0.900
2		141.19	0.00	0.00	236.06	0.00	999.999	4.33	15.49	0.00774	0.900
3	1 U2	211.42	0.00	-3.10	0.00	-267.61	86.213	5.36	15.49	0.00568	0.900
4		211.42	0.00	0.00	267.61	0.00	999.999	5.36	15.49	0.00568	0.900
5	1 U3	188.81	0.00	-2.94	0.00	-257.94	87.734	5.01	15.49	0.00628	0.900
6		188.81	0.00	0.00	257.94	0.00	999.999		15.49	0.00628	0.900
7	1 U4	141.22	0.00	-95.92	0.00	-236.08	2.461	4.33	15.49	0.00774	0.900
8		141.22	0.00	0.00	236.08	0.00	999.999		15.49	0.00774	0.900
9	1 U5	191.49	0.00	-189.96	0.00	-259.11	1.364	5.05	15.49	0.00620	0.900
10		191.49	0.00	0.00	259.11	0.00			15.49	0.00620	0.900
11	1 U6	103.09	0.00	-188.72	0.00	-217.30	1.151	3.83	15.49	0.00913	0.900
12		103.09	0.00	0.00	217.30	0.00	999.999	3.83	15.49	0.00913	0.900
13	1 U7	128.89	0.00	91.32	-0.00	230.11	2.520	4.16	15.49	0.00816	0.900
14		128.89	0.00	0.00	230.11	0.00	999.999	4.16	15.49	0.00816	0.900
15	1 U8	166.84	0.00	184.52	-0.00	248.07	1.344	4.69	15.49	0.00692	0.900
16		166.84	0.00	0.00	248.07	0.00	999.999	4.69	15.49	0.00692	0.900
17	1 U9	78.44	0.00	185.75	-0.00	204.68	1.102	3.54	15.49	0.01014	0.900
18		78.44	0.00	0.00	204.68	0.00	999.999	3.54	15.49	0.01014	0.900
19	2 U1	141.19	0.00	-2.31	0.00	-236.06	102.192	4.33	15.49	0.00774	0.900
20		141.19	0.00	0.00	236.06	0.00	999.999		15.49	0.00774	0.900
21	2 U2	180.67	0.00	-4.86	0.00	-254.33	52.289	4.89	15.49	0.00651	0.900
22		180.67	0.00	0.00	254.33	0.00	999.999		15.49	0.00651	0.900
23	2 U3	169.59	0.00	-4.04	0.00	-249.34	61.717	4.73	15.49	0.00683	0.900
24		169.59	0.00	0.00	249.34	0.00	999.999	4.73	15.49	0.00683	0.900
25	2 U4	141.22	0.00	-95.92	0.00	-236.08	2.461		15.49	0.00774	0.900
26		141.22	0.00	0.00	236.08	0.00	999.999	4.33	15.49	0.00774	0.900
27	2 U5	172.27	0.00	-191.06	0.00	-250.56	1.311	4.77	15.49	0.00675	0.900
28		172.27	0.00	0.00	250.56	0.00	999.999		15.49	0.00675	0.900
29	2 U6	103.09	0.00	-188.72	0.00	-217.30	1.151		15.49	0.00913	0.900
30		103.09	0.00	0.00	217.30	0.00	999.999		15.49	0.00913	0.900
31	2 U7	128.89	0.00	91.32	-0.00	230.11	2.520	4.16	15.49	0.00816	0.900
32		128.89	0.00	0.00	230.11	0.00	999.999	4.16	15.49	0.00816	0.900
33	2 U8	147.62	0.00	183.42	-0.00	239.13	1.304		15.49	0.00752	0.900
34		147.62	0.00	0.00	239.13	0.00	999.999		15.49	0.00752	0.900
35	2 U9	78.44	0.00	185.75	-0.00		1.102		15.49	0.01014	0.900
36		78.44	0.00	0.00	204.68	0.00	999.999	3.54	15.49	0.01014	0.900

*** End of output ***

Final Report

Column 13K

Page 1 02/18/14 02:31 PM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Lateral\Column Designs\13K\Frame 13 - 13K.col

				000	000			0									
				00	00			00									
000	000	000	000	00		00	000	00		00	00	0 000	00000	000	0 000	000	
00	0	00	00	00		00	00	00		00	00	00	00	00	00	00	
00		00	00	00		00	00	00		00	00	00	00	00	00	00	
000	000	00	00	00		00	00	00		00	00	00	00	00	00	00	
	00	0000	000	00		00	00	00		00	00	00	00	00	00	00	
0	00	00		00	00	00	00	00	0	00	00	00	00	00	00	00	
000	000	00		000	000	00	000	00	0	00	0 000	00	00	00	00	00	(TM)

spColumn v4.81 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright © 1988-2012, STRUCTUREPOINT, LLC. All rights reserved

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program.

Page 2 02/18/14 02:31 PM

eneral Inf	ormation:					
	: F:\SPRING\La Lateral System		Designs\13K\F	rame 13 - 1:	3K.col	
Column:	13K ACI 318-11		Engineer Units: E			
	n: Design Biaxial			ess: Not con ype: Struct		
aterial Pr	operties:					
	ksi 605 ksi strain = 0.003	in/in	fy = 6 Es = 2	0 ksi 9000 ksi		
ection:						
Rectangul	ar: Width = 18	in	Depth =	18 in		
Gross sec	tion area, Ag :	= 324 in^2				
Ix = 874 rx = 5.1 Xo = 0 i	8 in^4 9615 in		Iy = 87 ry = 5. Yo = 0	19615 in		
einforceme						
Bar Set: Size Diam	ASTM A615 (in) Area (in					
# 3 # 6	0.38 0 0.75 0 1.13 1 1.69 2	.11 # 4 .44 # 7	0.50	0.20 # 0.60 #	5 0.63 8 1.00	0.31
Bar selec Asmin = 0	tion: Minimum 1 .01 * Ag = 3.2	number of bar 4 in^2, Asma	s x = 0.08 * Ag	= 25.92 in	^2	1.56
Bar selec Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total ste	tion: Minimum 1	number of bar 4 in^2, Asma ies with #10 0.9, phi(c) 1 (Cover to 5.28 in^2 at	s x = 0.08 * Ag bars, #4 wit = 0.65	= 25.92 in h larger ba	^2 rs.	1.56
Bar selec Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total ste Minimum c	tion: Minimum : .01 * Ag = 3.2 nt: Tied; #3 t: 0.8, phi(b) = ectangular All Sides Equa: el area: As = 5	number of bar 4 in^2, Asma ies with #10 0.9, phi(c) 1 (Cover to 5.28 in^2 at	s x = 0.08 * Ag bars, #4 wit = 0.65	= 25.92 in h larger ba	^2 rs.	1.56
Bar selec Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total ste Minimum c 12 #6 C ervice Loa	tion: Minimum 1 .01 * Ag = 3.2 nt: Tied; #3 t: 0.8, phi(b) = ectangular All Sides Equa el area: As = 9 lear spacing = over = 1.5 in ds:	number of bar 4 in^2, Asma ies with #10 0.9, phi(c) 1 (Cover to 5.28 in^2 at	s x = 0.08 * Ag bars, #4 wit = 0.65	= 25.92 in h larger ba	^2 rs.	1.56
Bar selec Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total ste Minimum c 12 #6 C ervice Loa Load No. Case	tion: Minimum 1 .01 * Ag = 3.2 nt: Tied; #3 t: 0.8, phi(b) = ectangular All Sides Equa el area: As = 1 lear spacing = over = 1.5 in ds: === Axial Load kip	number of bar 4 in^2, Asma ies with #10 0.9, phi(c) 1 (Cover to 5.28 in^2 at 3.75 in Mx @ Top k-ft	s x = 0.08 * Ag bars, #4 wit = 0.65 transverse re rho = 1.63% Mx @ Bot k-ft	= 25.92 in h larger ba inforcement My @ Top k-ft	^2 rs. My @ Bot k-ft	5
Bar selec Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total ste Minimum c 12 #6 C ervice Loa Load No. Case	tion: Minimum : .01 * Ag = 3.2. nt: Tied; #3 t: 0.8, phi(b) = ectangular All Sides Equa el area: As = 1 lear spacing = over = 1.5 in ds: == Axial Load kip 	number of bar 4 in^2, Asma ies with #10 0.9, phi(c) 1 (Cover to 5.28 in^2 at 3.75 in Mx @ Top k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	s x = 0.08 * Ag bars, #4 wit = 0.65 transverse re rho = 1.63% Mx @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	= 25.92 in h larger ba inforcement; 	^2 rs. My @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	
Bar selec Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total ste Minimum co 12 #6 Co ervice Load No. Case Load No. Case Load No. Case Load No. Case Load No. Case Load No. Case Load No. Case Load No. Case Snow 2 Dead Live Wind EQ Snow	tion: Minimum 1 .01 * Ag = 3.24 nt: Tied; #3 t: 0.8, phi(b) = ectangular All Sides Equal el area: As = 9 lear spacing = over = 1.5 in ds: === Axial Load kip 	number of bar 4 in^2, Asma ies with #10 0.9, phi(c) 1 (Cover to 5.28 in^2 at 3.75 in Mx @ Top k-ft	s x = 0.08 * Ag bars, #4 wit = 0.65 transverse re rho = 1.63% Mx @ Bot k-ft	= 25.92 in h larger ba inforcement My @ Top k-ft	^2 rs. My @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	
Bar selec Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total ste Minimum co 12 #6 C ervice Loa Load No. Case Load No. Case Use Used Live Wind EQ Snow 2 Dead Live Wind EQ Snow	tion: Minimum : .01 * Ag = 3.2. nt: Tied; #3 t: 0.8, phi(b) = ectangular All Sides Equa el area: As = 1 lear spacing = over = 1.5 in ds: == Axial Load kip 	number of bar 4 in^2, Asma ies with #10 0.9, phi(c) 1 (Cover to 5.28 in^2 at 3.75 in Mx @ Top k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	s x = 0.08 * Ag bars, #4 wit = 0.65 transverse re rho = 1.63% Mx @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	= 25.92 in h larger ba inforcement; 	^2 rs. My @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	
Bar selec Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total ste Minimum co 12 #6 C ervice Loa Load No. Case Load Live Wind EQ Snow 2 Dead Live Wind EQ Snow ustained L	tion: Minimum : .01 * Ag = 3.2. nt: Tied; #3 t: 0.8, phi(b) = ectangular All Sides Equa el area: As = 1 lear spacing = over = 1.5 in ds: == Axial Load kip 	number of bar 4 in^2, Asma ies with #10 0.9, phi(c) 1 (Cover to 5.28 in^2 at 3.75 in Mx @ Top k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	s x = 0.08 * Ag bars, #4 wit = 0.65 transverse re rho = 1.63% Mx @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	= 25.92 in h larger ba inforcement; 	^2 rs. My @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	
Bar selec Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total ste Minimum c 12 #6 C ervice Loa No. Case 1 Dead Live Wind EQ Snow 2 Dead Live Wind EQ Snow ustained L Load Case Dead	tion: Minimum : .01 * Ag = 3.2. nt: Tied; #3 t: 0.8, phi(b) = ectangular All Sides Equa el area: As = 9 lear spacing = over = 1.5 in ds: === Axial Load kip 	number of bar 4 in^2, Asma ies with #10 0.9, phi(c) 1 (Cover to 5.28 in^2 at 3.75 in Mx @ Top k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	s x = 0.08 * Ag bars, #4 wit = 0.65 transverse re rho = 1.63% Mx @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	= 25.92 in h larger ba inforcement; 	^2 rs. My @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	
Bar selec Asmin = 0 Confineme phi(a) = Layout: R Pattern: Total stee Minimum co 12 #6 C ervice Loa Load No. Case Load Live Wind EQ Snow 2 Dead Wind EQ Snow 2 Dead Live Wind EQ Snow 2 Dead Live Wind EQ Snow	tion: Minimum : .01 * Ag = 3.2. nt: Tied; #3 t: 0.8, phi(b) = ectangular All Sides Equa el area: As = ' lear spacing = over = 1.5 in ds: === Axial Load kip 	number of bar 4 in^2, Asma ies with #10 0.9, phi(c) 1 (Cover to 5.28 in^2 at 3.75 in Mx @ Top k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	s x = 0.08 * Ag bars, #4 wit = 0.65 transverse re rho = 1.63% Mx @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	= 25.92 in h larger ba inforcement; 	^2 rs. My @ Bot k-ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	

U1 = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake + 0.000*Snow U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake + 0.500*Snow

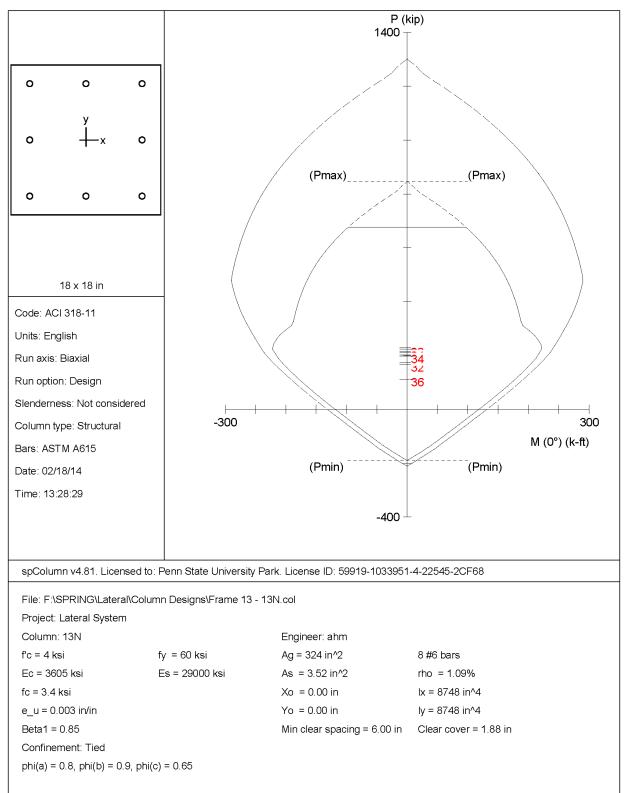
Peggy Ryan Williams Center Page 196

Page 3 02/18/14 02:31 PM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Lateral\Column Designs\13K\Frame 13 - 13K.col

U3	=	1.200*Dead +	1.000*Live	$^{+}$	0.000*Wind	+	0.000*EarthQuake	+	1.600*Snow
U4	=	1.200*Dead +	0.000*Live	$^{+}$	0.800*Wind	+	0.000*EarthQuake	+	1.600*Snow
U5	=	1.200*Dead +	1.000*Live	$^{+}$	1.600*Wind	+	0.000*EarthQuake	+	0.500*Snow
U6	-	0.900*Dead +	0.000*Live	$^{+}$	1.600*Wind	+	0.000*EarthQuake	+	0.000*Snow
U7	=	1.200*Dead +	0.000*Live	122	0.800*Wind	+	0.000*EarthQuake	+	1.600*Snow
U8	=	1.200*Dead +	1.000*Live	122	1.600*Wind	+	0.000*EarthQuake	+	0.500*Snow
U9	=	0.900*Dead +	0.000*Live	722	1.600*Wind	$^{+}$	0.000*EarthQuake	+	0.000*Snow

Factored Loads and Moments with Corresponding Capacities:


Design/Required ratio PhiMn/Mu >= 1.00 NOTE: Each loading combination includes the following cases: First line - at column top Second line - at column bottom Load Dr Marco Second Line - At column bottom

	Load	Pu	Mux	Muy	PhiMnx	PhiMny	PhiMn/Mu	NA depth	Dt depth	eps t	Phi
No.	Combo	kip	k-ft	k-ft	k-ft	k-ft	1 1111111/ 114	in acpen	in in	CPD_C	1.11.1
1	1 U1	203.90	0.00	4.27	-0.00	254.99	59.717	5.90	15.75	0.00500	0.900
2		203.90	0.00	0.00	254.99	0.00	999.999	5.90	15.75	0.00500	0.900
3	1 U2	295.56	0.00	6.83	-0.00	220.93	32.328	8.59	15.75	0.00250	0.687
4		295.56	0.00	0.00	220.93	0.00	999.999	8.59	15.75	0.00250	0.687
5	1 U3	265.69	0.00	6.03	-0.00	236.88	39.284	7.46	15.75	0.00333	0.758
6		265.69	0.00	0.00	236.88	0.00	999.999	7.46	15.75	0.00333	0.758
7	1 U4	193.94	0.00	-93.39	0.00	-251.63	2.694	5.76	15.75	0.00520	0.900
8		193.94	0.00	0.00	251.63	0.00	999.999	5.76	15.75	0.00520	0.900
9	1 U5	252.51	0.00	-189.36	0.00	-241.89	1.277	7.10	15.75	0.00365	0.785
10		252.51	0.00	0.00	241.89	0.00	999.999			0.00365	0.785
11	1 U6	131.08	0.00	-192.32	0.00	-229.05	1.191			0.00661	0.900
12		131.08	0.00	0.00	229.05	0.00	999.999	4.91		0.00661	0.900
13	1 U7	193.94	0.00	101.67	-0.00	251.63	2.475		15.75	0.00520	0.900
14		193.94	0.00	0.00	251.63	0.00	999.999	5.76	15.75	0.00520	0.900
15	1 U8	252.51	0.00	200.76	-0.00	241.89	1.205		15.75	0.00365	0.785
16		252.51	0.00	0.00	241.89	0.00	999.999		15.75	0.00365	0.785
17	1 U9	131.08	0.00	197.81	-0.00	229.05	1.158		15.75	0.00661	0.900
18		131.08	0.00	0.00	229.05	0.00	999.999		15.75	0.00661	0.900
19	2 U1	203.90	0.00	4.27	-0.00	254.99	59.717		15.75	0.00500	0.900
20		203.90	0.00	0.00	254.99	0.00	999.999		15.75	0.00500	0.900
21	2 U2	273.41	0.00	7.97	-0.00	233.33	29.276		15.75	0.00313	0.741
22		273.41	0.00	0.00	233.33	0.00	999.999			0.00313	0.741
23	2 U3	251.85	0.00	6.74	-0.00	242.09	35.919		15.75	0.00367	0.786
24		251.85	0.00	0.00	242.09	0.00	999.999		15.75	0.00367	0.786
25	2 U4	193.94	0.00	-93.39	0.00	-251.63	2.694		15.75	0.00520	0.900
26		193.94	0.00	0.00	251.63	0.00	999.999		15.75	0.00520	0.900
27	2 U5	238.67	0.00	-188.65	0.00	-245.86	1.303		15.75	0.00396	0.811
28		238.67	0.00	0.00	245.86	0.00	999.999		15.75	0.00396	0.811
29	2 U6	131.08	0.00	-192.32	0.00	-229.05	1.191			0.00661	0.900
30		131.08	0.00	0.00	229.05	0.00	999.999			0.00661	0.900
31	2 U7	193.94	0.00	101.67	-0.00	251.63	2.475				0.900
32		193.94	0.00	0.00	251.63	0.00	999.999	5.76	15.75	0.00520	0.900
33	2 U8	238.67	0.00	201.47	-0.00	245.86	1.220			0.00396	0.811
34		238.67	0.00	0.00	245.86	0.00	999.999			0.00396	0.811
35	2 U9	131.08	0.00	197.81	-0.00		1.158			0.00661	0.900
36		131.08	0.00	0.00	229.05	0.00	999.999	4.91	15.75	0.00661	0.900

*** End of output ***

Final Report

Column 13N

Page 1 02/18/14 01:25 PM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Lateral\Column Designs\Frame 13 - 13N.col

				000	000			0									
				00	00			00									
000	000	000	000	00		000	000	00		00	00	0 000	00000	000	0 000	000	
00	0	00	00	00		00	00	00		00	00	00	00	00	00	00	
00		00	00	00		00	00	00		00	00	00	00	00	00	00	
000	000	00	00	00		00	00	00		00	00	00	00	00	00	00	
	00	0000	000	00		00	00	00		00	00	00	00	00	00	00	
0	00	00		00	00	00	00	00	0	00	00	00	00	00	00	00	
000	000	00		000	000	000	000	00	0	000	0 000	00	00	00	00	00	(MT)

spColumn v4.81 (TM) Computer program for the Strength Design of Reinforced Concrete Sections Copyright © 1988-2012, STRUCTUREPOINT, LLC. All rights reserved

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program.

Page 2 02/18/14 01:25 PM

STRUCTUREPOINT - spColumn v4 Licensed to: Penn State Univ F:\SPRING\Lateral\Column Des	ersity Park	. License ID 13 - 13N.col	: 59919-103395	51-4-22545-2CF	58
General Information:					
File Name: F:\SPRING\Later Project: Lateral System Column: 13N	al\Column D	Engineer	: ahm		
Code: ACI 318-11		Units: E	nglish ess: Not consi	dorod	
Run Option: Design Run Axis: Biaxial			pe: Structura		
Material Properties:					
f'c = 4 ksi Ec = 3605 ksi Ultimate strain = 0.003 in Betal = 0.85	n/in	fy = 6 Es = 2) ksi 9000 ksi		
Section:					
Rectangular: Width = 18 in		Depth =	18 in		
Gross section area, Ag = Ix = 8748 in^4 rx = 5.19615 in Xo = 0 in	324 in^2	Iy = 87 ry = 5. Yo = 0	19615 in		
Reinforcement:					
Bar Set: ASTM A615 Size Diam (in) Area (in^2)	Size Dia	m (in) Area	(in^2) Size	Diam (in) Area	a (in^2)
# 3 0.38 0.11 # 6 0.75 0.44 # 9 1.13 1.00 # 14 1.69 2.25	. # 4 # 7 0 # 10 5 # 18	0.50 0.88 1.27 2.26	0.20 # 5 0.60 # 8 1.27 # 11 4.00	0.63 1.00 1.41	0.31 0.79 1.56
Bar selection: Minimum num Asmin = 0.01 * Ag = 3.24 j	mber of bars				
Confinement: Tied; #3 ties phi(a) = 0.8, phi(b) = 0.	with #10 b	ars, #4 wit			
Layout: Rectangular Pattern: All Sides Equal Total steel area: As = 3.5 Minimum clear spacing = 6.	52 in^2 at r		inforcement)		
8 #6 Cover = 1.5 in					
Service Loads:					
Load Axial Load No. Case kip					
1 Dead 124.43 Live 48.01 Wind 0.00 EQ 0.00 Snow 10.46 2 Dead 124.43 Live 43.79 Wind 0.00 FO 0.00	0.00	0.00	-5.74 -4.04	0.00	
Wind 0.00 EQ 0.00	0.00	0.00	-96.47	0.00	
2 Dead 124.43	0.00	0.00	-0.55 -5.74	0.00	
Live 43.79 Wind 0.00	0.00	0.00	-4.41 -96.47	0.00	
EQ 0.00 Snow 10.46	0.00	0.00			
Sustained Load Factors:					
Load Factor Case (%)					
Dead 100					
Wind 0					
EQ 0 Snow 0					
Load Combinations:					

UI = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake + 0.000*Snow U2 = 1.200*Dead + 1.600*Live + 0.000*Wind + 0.000*EarthQuake + 0.500*Snow

Peggy Ryan Williams Center Page 200

Page 3 02/18/14 01:25 PM

STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University Park. License ID: 59919-1033951-4-22545-2CF68 F:\SPRING\Lateral\Column Designs\Frame 13 - 13N.col

UЗ	-	1.200*Dead +	1.000*Live	$^{+}$	0.000*Wind	+	0.000*EarthQuake	+	1.600*Snow
U4	=	1.200*Dead +	0.000*Live	$^{+}$	0.800*Wind	+	0.000*EarthQuake	+	1.600*Snow
U5	=	1.200*Dead +	1.000*Live	$^{+}$	1.600*Wind	+	0.000*EarthQuake	+	0.500*Snow
U6	=	0.900*Dead +	0.000*Live	$^{+}$	1.600*Wind	+	0.000*EarthQuake	+	0.000*Snow
U7	=	1.200*Dead +	0.000*Live	122	0.800*Wind	+	0.000*EarthQuake	$^{+}$	1.600*Snow
U8	=	1.200*Dead +	1.000*Live	122	1.600*Wind	+	0.000*EarthQuake	+	0.500*Snow
U9	=	0.900*Dead +	0.000*Live	722	1.600*Wind	$^{+}$	0.000*EarthQuake	+	0.000*Snow

Factored Loads and Moments with Corresponding Capacities:

Design/Required ratio PhiMn/Mu >= 1.00 NOTE: Each loading combination includes the following cases: First line - at column top Second line - at column bottom Load Dr Marco Second Line - At column bottom

	Load	Pu	Mux		Dhillion	DhaMarr	Dhille /Mar	NA depth D	to a state by	in the second	Phi
No.		kip	k-ft	Muy k-ft	k-ft	k-ft	PHIMI/Plu	in in	in in	eps_t	PIII
NO.			V_TC								
1	1 U1	174.20	0.00	-8.04	0.00	-206.48	25.694	5.11	15.75	0.00625	0.900
2		174.20	0.00	0.00	206.48	0.00	999.999	5.11	15.75	0.00625	0.900
3	1 U2	231.36	0.00	-13.63	0.00	-222.84	16.353	5.96	15.75	0.00493	0.894
4	ES (535)	231.36	0.00	0.00	222.84	0.00	999.999	5.96	15.75	0.00493	0.894
5	1 U3	214.06	0.00	-11.81	0.00	-219.25	18.568	5.70	15.75	0.00529	0.900
6		214.06	0.00	0.00	219.25	0.00	999.999	5.70	15.75	0.00529	0.900
7	1 U4	166.05	0.00	-84.94	0.00	-203.05	2.390	4.96	15.75		0.900
8		166.05	0.00	0.00	203.05	0.00	999.999	4.96	15.75	0.00652	0.900
9	1 U5	202.56	0.00	-165.55	0.00	-216.03	1.305	5.54	15.75		0.900
10		202.56	0.00	0.00	216.03	0.00	999.999	5.54	15.75	0.00553	0.900
11	1 U6	111,99	0.00	-159.51	0.00	-178.33	1.118	4.04	15.75	0.00870	0.900
12		111.99	0.00	0.00	178.33	0.00	999.999	4.04	15.75	0.00870	0.900
13	1 U7	166.05	0.00	69.41	-0.00	203.05	2.926	4.96	15.75	0.00652	0.900
14		166.05	0.00	0.00	203.05	0.00	999.999	4.96	15.75	0.00652	0.900
15	1 U8	202.56	0.00	143.14	-0.00	216.03	1.509	5.54	15.75	0.00553	0.900
16		202.56	0.00	0.00	216.03	0.00	999.999	5.54	15.75	0.00553	0.900
17	1 U9	111.99	0.00	149.18	-0.00	178.33	1.195	4.04	15.75	0.00870	0.900
18		111.99	0.00	0.00	178.33	0.00	999.999	4.04	15.75	0.00870	0.900
19	2 U1	174.20	0.00	-8.04	0.00	-206.48	25.694	5.11	15.75	0.00625	0.900
20		174.20	0.00	0.00	206.48	0.00	999.999	5.11	15.75	0.00625	0.900
21	2 U2	224.61	0.00	-14.22	0.00	-222.14	15.623	5.84	15.75	0.00509	0.900
22		224.61	0.00	0.00	222.14	0.00	999.999	5.84	15.75	0.00509	0.900
23	2 U3	209.84	0.00	-12.18	0.00	-218.07	17.907	5.64	15.75	0.00538	0.900
24		209.84	0.00	0.00	218.07	0.00	999.999	5.64	15.75	0.00538	0.900
25	2 U4	166.05	0.00	-84.94	0.00	-203.05	2.390	4.96	15.75	0.00652	0.900
26		166.05	0.00	0.00	203.05	0.00	999.999	4.96	15.75	0.00652	0.900
27	2 U5	198.34	0.00	-165.92	0.00	-214.85	1.295	5.49	15.75	0.00561	0.900
28		198.34	0.00	0.00	214.85	0.00	999.999	5.49	15.75	0.00561	0.900
29	2 U6	111.99	0.00	-159.51	0.00	-178.33	1.118	4.04	15.75	0.00870	0.900
30		111.99	0.00	0.00	178.33	0.00	999.999	4.04	15.75	0.00870	0.900
31	2 U7	166.05	0.00	69.41	-0.00	203.05	2.926	4.96	15.75		0.900
32		166.05	0.00	0.00	203.05	0.00	999.999	4.96	15.75	0.00652	0.900
33	2 U8	198.34	0.00	142.77	-0.00	214.85	1.505	5.49	15.75		0.900
34		198.34	0.00	0.00	214.85	0.00	999.999	5.49	15.75	0.00561	0.900
35	2 U9	111.99	0.00	149.18	-0.00		1.195	4.04	15.75	0.00870	0.900
36		111.99	0.00	0.00	178.33	0.00	999.999	4.04	15.75	0.00870	0.900

*** End of output ***

Structural

Appendix B.7: Beam-Column Interaction Calculations

Girder Interaction

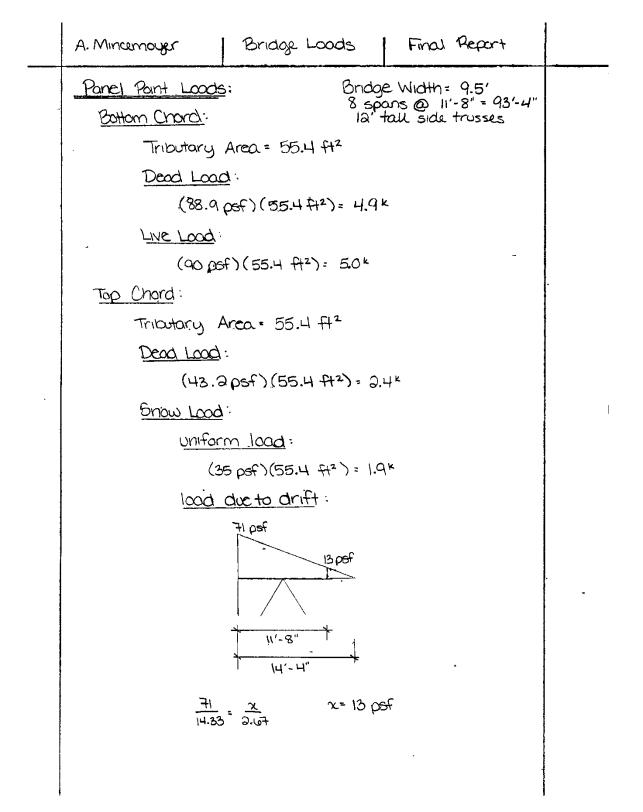
Final Report A. Mincemoner Lateral Check Girder Strength Adaquacy for Interaction: ·worst cose loading was found to be on Girder 8, Spon 5. (at midepan) from spBeam: Mu= 1077.7" OMn= 1130.91K $f_{C} = 4 \text{ kai}$ $f_{V} = 60 \text{ ksi}$ $\beta_{1} = 0.85$ (15) #8 bors b = 30'' #3 tes fic = 4 Koi DPn = 0 0.85fE.BI.C.D + ZASIFSI not include reinforcement $C = \frac{\alpha}{\beta_1} = \frac{(0.97)}{0.85} \rightarrow C = 8.2''$ $\mathcal{E}_{t} = \underbrace{\mathcal{E}_{u}}_{t} (d_{t} - c) = \underbrace{-003}_{8,2} \left[(24.5 - 1.5 - .375 - .5) - 8.2 \right]$ → ET=, D.0051 ≥ .005 → Q=0.90 DPn = (0.90)(0.85)(4)(0.85)(8.2)(30)OPn= 640K Pu=112.74 (due to wind) Interaction. $\frac{P_{u}}{0P_{n}} = \frac{112.7}{040} = 0.18 < 0.2$ $\Rightarrow \pm \frac{\dot{P}_{u}}{\Phi P_{n}} + \frac{q}{8} \left(\frac{8}{9} \frac{Mu}{\Phi Mn} \right) \pm \frac{10}{10}$ $\frac{1}{2} \frac{113.7}{640} + \frac{9}{8} \left(\frac{8}{9} \frac{1077.7}{1130.9} \right) = 1.0 \le 1.0 \sqrt{0k}$ + Girder Strength is adequate for interaction

Joist Interaction

Final Report A. Mincenayer Latoral Check Joist Strength Adaguacy for Interaction: · Jaktsalong column line D · Span 1 · midspan from spBeam: Mu= 54.73'K OMN= 104.52" ft=4 kgi fy=60 kgi Bi=0.85 (1)#6 and (1)#7 D= 0 $0 = \frac{Asfy}{0.85fcb} = \frac{(.44+.6)(60)}{.85(4)(6)} = 3.06''$ C= 0/B= 3.00/.85 = 3.6" $\mathcal{E}_{\tau} = \underbrace{\mathcal{E}_{u}}_{C} (d_{\tau} - C) = \underbrace{003}_{310} \left[(24.5 - 1.5 - \frac{175}{2}) - 3.6 \right]$ €τ=0.016 ≥.005 → Φ=0.90 DPn = 0 0.85 fc (bh - EASi) + EASi fy = (.90)(.85)(4) [(6)(24.5) - (.44+.6)] + (.44+.6)(60) OPn= 509K Pu= 46.0K (due to wind) Interaction: $\frac{P_{u}}{\Phi P_{0}} = \frac{40.0}{509} = 0.09 < 0.2$ $\frac{1}{2} \frac{R_u}{\Phi R_h} + \frac{q}{8} \left(\frac{g}{q} \frac{M_u}{\Phi M_h} \right) \leq 1.0$ $\frac{1}{2} \frac{40.0}{509} + \frac{54.73}{104.52} = 0.57 \le 1.0 \quad \sqrt{0k}$ > Joist strength is adequate for interaction

Appendix C.1: Gravity Loads on the Bridge

Dead and Live Loads

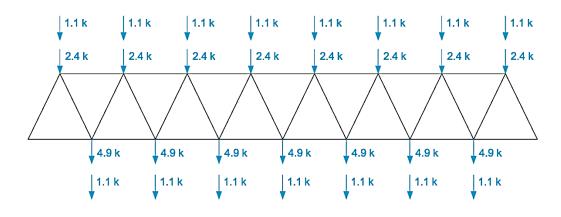

```
Bridge Loads
                                             Final Report
A. Mincemoyer
Floor Dead Load:
      Linear Metal Ceiling = 3 psf
       34" Plywood Sheathing = 2.4 psf (ASCE 7-10)
      Sprayed Plashic Faam Insulation = 1 psf
      35%" Metal Stude @ 16" O.C. = 3 per
      6" concrete slab on 3" composite deck = 57 psf
      corpet pad & adhesive = 1.5 psf
      carpet = 1 pef
     MISC. & superimposed.
             mep = 5 pef
              lighting = 5 psf
framing allowance = 10 psf
    → Total Floor Dead Lood = 88.9 pist .
Floor Live Load.
Uniform pedestrian loading = 90 psf
* per LRFD Guide Specifications for the Design of Pedestrian Bridges
Exterior Wall Load:
     Aluminum StoreFront = 12.0 psf
                                                USC 15:0 pof
                                                conservatively
    Composite Aluminum Panel = 13.0 psf
     (calculated in Technical Report 2)
Roof Dead Load:
       Roof Type RS-1 = 43.2 psf
       (calculated in Technical Report 2)
```

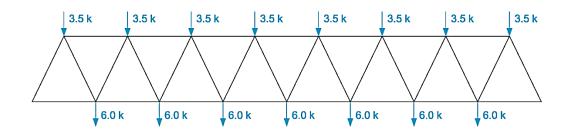
Structural

Snow Loads

A. Mincemoyer Bridge Loods Final Report	
Snow Drift onto Roof: Section 7.7.1	
$h_{c'_{h_b}} < 0.2 \Rightarrow not required$	
$\chi = 0.13 \rho_3 + 14 < 30 \rho_c f$.	
= $0.13(45) + 14 = 19.85 \text{ pcf} < 30 \text{ pcf}$	
$h_{b} = \frac{p_{s}}{\chi} = \frac{35}{19.85} = 1.76'$	
$h_{c} = 10.92 - 1.70 = 15.10'$	
$hc/hb = \frac{15.10}{1.70} = 8.0 \rightarrow drift required$	
Leonard: (figure 7-9)	
- lu= 80.75'	
ha= 0.43 7 lu 4/pg+10 -1.5	
= 0.43 3/80.75 4/45+10 -1.5	
ha= 3.56°	
Windward: (figure 7-9)	
lu = 90'	
ha = [.43790' 145+10' - 1.5](.75)	<i>a</i> -
$h_{d} = 2.81'$	
→ ha= 3.56 ft should be used in design	
ha < hc > w= 4ha= 4(3.56)= 14.3 ft	
hay = 3.56(19.85) = 71 psf	
3.56' 100 psf 100 p	

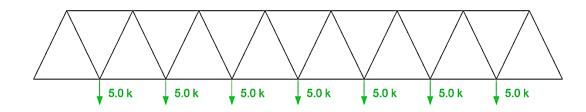
Appendix C.2: Determination of Panel Point Loads

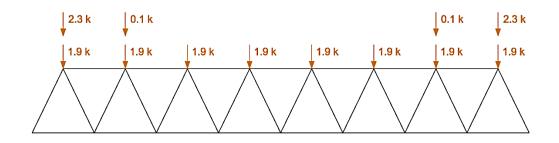

	A. Minamoyer Bridge Loads Final Report
	load due to drift: (continued)
Í	(13 psf)(9.5%)(11.67) = 0.7K
	(2)(71-13)(9.5/2)(11.67)= 1.6K
÷	2.3 K on first panel point
	$(\frac{1}{2})(13)(9.5\frac{1}{2})(3.5\frac{1}{2}) = 0.1^{k}$ on second panel point
1	Exterior Wall Load:
	Tributary Area = 70 ft^2
	$(15 \text{ par})(70 \text{ ft}^2) = 1.1 \text{ k}$ on every panel point
	* See AutoCAD Chrawing for load summary *
	~
	-
	-
	•
	~ _ ~ ~
	*

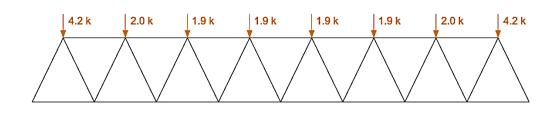

Appendix C.3: Panel Point Loads

Color Coding Key

Dead Loads Live Loads Snow Loads Load Combination Loads Index Member Force

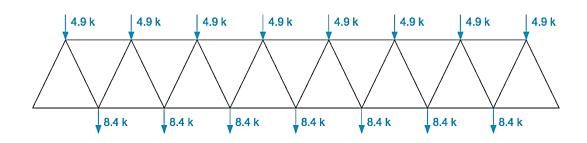

Dead Loads




T.

Live Loads

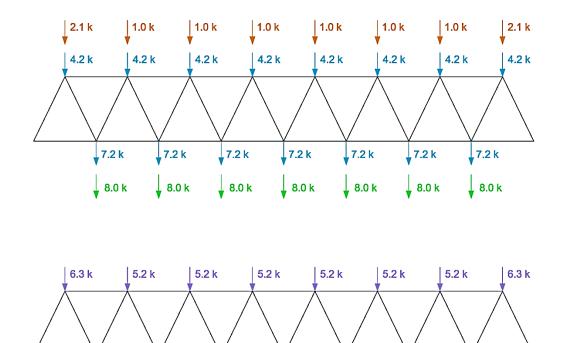
Snow Loads



Structural

Appendix C.4: Panel Point Load Combinations

1.4 D

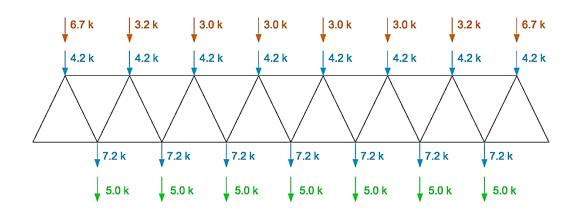


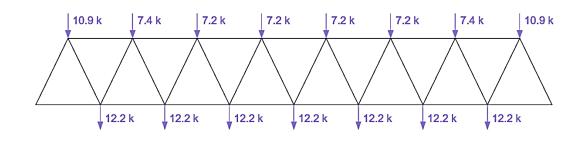
1.2 D + 1.6 L + 0.5 S

15.2 k

15.2 k

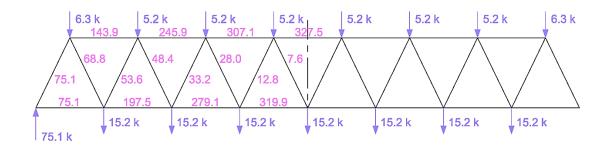
15.2 k

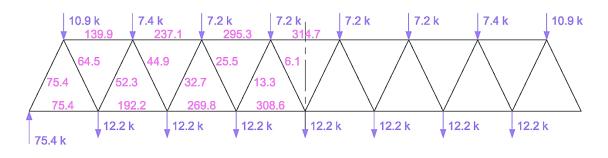

15.2 k


15.2 k

15.2 k

15.2 k

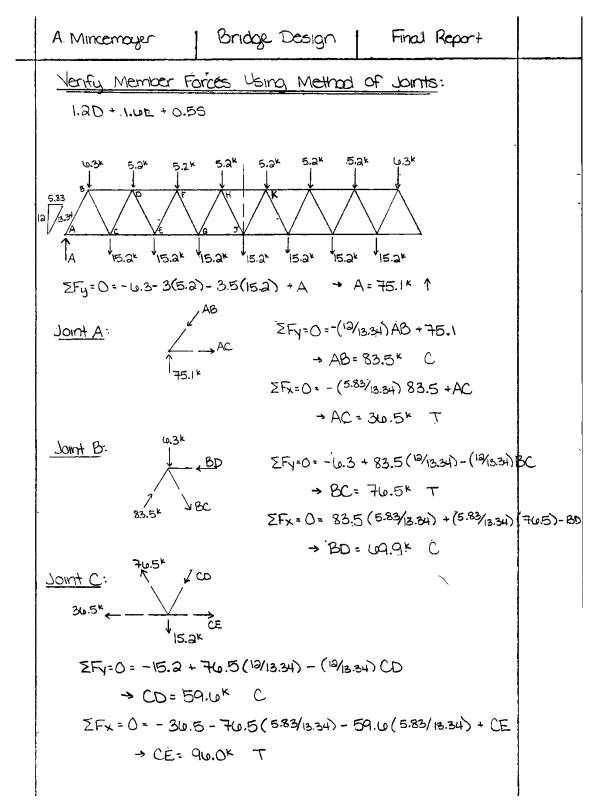

1.2 D + 1.6 S + L

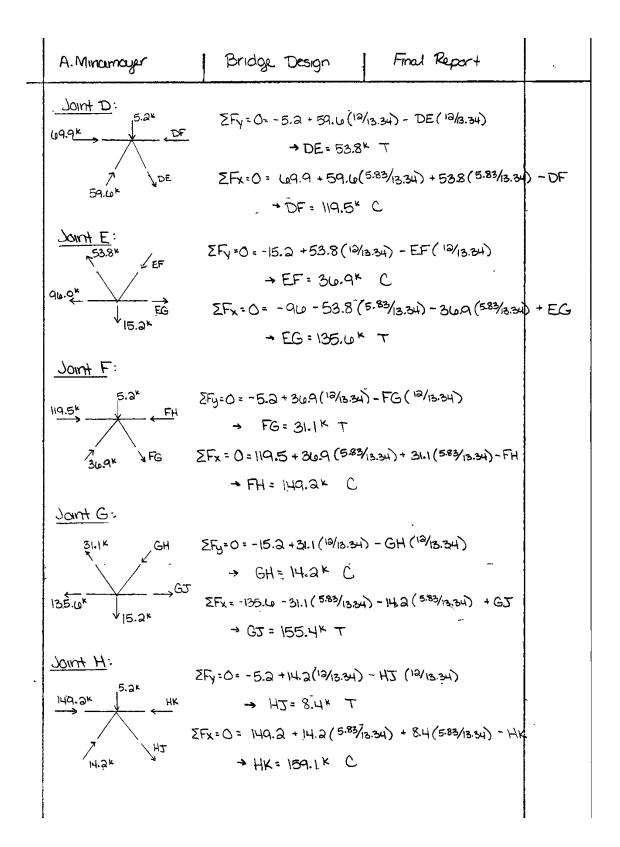


Appendix C.5: Member Indices

1.2 D + 1.6 L + 0.5 S

1.2 D + 1.6 S + L




Appendix C.6: Conversion of Indices to Member Forces

	Converting Indexes to Forces												
			p =	5.8	ft								
			h =	12.0	ft	p/h =	0.49						
			L =	13.3	ft	L/h =	1.11						
	1	L.2 D + 1.6 I	L + 0.5 S			1.2 D + 3	1.6 S + L		Max Member Force				
	Index	Ratio	Force (k)		Index	Ratio	Force (k)	7	(k)				
p	143.9	0.49	70.0	p	139.9	0.49	68.1	p	70.0				
Top Chord	245.9	0.49	119.6	Top Chord	237.1	0.49	115.3	Top Chord	119.6				
dc	307.1	0.49	149.3) dc	295.3	0.49	143.6	dc	149.3				
Ĕ	327.5	0.49	159.3	Ĕ	314.7	0.49	153.0	⊢ ⊢	159.3				
	75.1	1.11	83.5		75.4	1.11	83.8		83.8				
	68.8	1.11	76.5		64.5	1.11	71.7		76.5				
<u>s</u>	53.6	1.11	59.6	<u>s</u>	52.3	1.11	58.2	<u>s</u>	59.6				
ona	48.4	1.11	53.8	ona	44.9	1.11	49.9	ona	53.8				
Diagonals	33.2	1.11	36.9	Diagonals	32.7	1.11	36.4	Diagonals	36.9				
	28	1.11	31.2	Ω	25.5	1.11	28.4		31.2				
	12.8	1.11	14.3		13.3	1.11	14.8		14.8				
	7.6	1.11	8.5		6.1	1.11	6.8		8.5				
_	75.1	0.49	36.6		75.4	0.49	36.7	_	36.7				
3ottom Chord	197.5	0.49	96.1	3ottom Chord	192.2	0.49	93.5	3ottom Chord	96.1				
Bottom Chord	279.1	0.49	135.7	Bottom Chord	269.8	0.49	131.2	Bottom Chord	135.7				
	319.9	0.49	155.6		308.6	0.49	150.1		155.6				

T.

Appendix C.7: Method of Joints

Appendix C.8: Member Design

$\frac{\text{Member Design}}{\text{Top Chard}}:$ $\frac{\text{Top Chard}}{\text{Moximum member force} = 159.3 \text{ Compression}$ $kL = 11.67 \text{ ft}$ $\text{Using Table 4-4 of the steel Manual:}$ $\frac{1}{1457 \times 7 \times \frac{1}{4}} \qquad 0R_{c} = 213^{*} \times R^{\frac{1}{2}} 159.3^{*} \sqrt{6k}$ $\frac{\text{Battom Chard}}{\text{Moximum member force}}:$ $\frac{\text{Moximum member force}}{\text{Force}} = 155.6^{*} \text{ Tension}$ $\frac{1}{16} \text{ ft}$ $* \text{ for aesthetics, use HSS7 \times 7}$ $\frac{1}{157} \text{ rable 5-5 of the Steel Manual}:}$ $\frac{1}{1557 \times 7 \times \frac{1}{4}} \qquad 0R_{n} = 255^{*} \times 155.6^{*} \sqrt{6k}$ $* \frac{1057 \times 7 \times \frac{1}{4}}{100 \text{ send}} \frac{1000 \text{ cm} \text{ k. But, HSS7 } \times 7 \times \frac{1}{4} \text{ was}$ $\frac{1000 \text{ cm} \text{ force}}{100 \text{ send}} \frac{153.8 \text{ cm} \text{ cm} \text{ send}}{100 \text{ send}} \frac{1}{100 s$	A.Mincemayer	Bridge Design	Final Report
MOXIMUM member force = 159.3* Compression KL = 11.67 ft Using Table 4-4 of the steel Manual: HSS7 *7 * 4 OR = 212* > Rei = 159.3* /ok Battom Chord: Movimum member force = 155.0* Tension KL = 11.67 ft * for aesthetics, use HSS7 *7 Using Table 5-5 of the Steel Manual: HSS7 *7 * 4 OR= 255* > 155.0* /ok * HSS7 *7 * 3/16 Would work. But, HSS7 *7 * 4 Was Chosen for construction 11ty. Diagonals: Maximum member force = 83.8* Compression KL = 13.33 ft Using Table H-4 of the Steel Manual:	Member Design		
 kL= 11.67 ft. Using Table 4-4 of the steel Manual: HSS7×7× ¼ OR=212× > Ri=159.3× Jok Battom Chard: maximum member farce = 155.0× Tension KL= 11.07 ft * for aesthetics, use HSS7×7 Using Table 5-5 of the Steel Manual: HSS7×7× ¼ OR=255× > 155.0× Vok * HOS7×7× Ju wasid work. But, HSS7×7× ¼ was Chosen for constructionity. Diagonals: maximum member force = 83.8× Compression KL= 13.83 ft Using Table H-4 of the Steel Manual: 	Top Chord:		
Using Table 4-4 of the steel Manual: HSS7×7× ½ OR=212× > Ri= 159.3× Jok Battom Chard: maximum member farce = 155.0× Tension KL= 11.07 ft * for aesthetics, use HSS7×7 Using Table 5-5 of the Steel Manual: HSS7×7× ¼ OR=255× > 155.0× Vok * HOS7×7×3/10 Would work. But, HSS7×7× ½ Was Chosen for constructionity. Diagonals: maximum member force = 82.8× Compression KL= 13.33 ft Using Table 4-4 of the Steel Manual:	MOximum	member force = 159.	3× Compression
HSST \times \times \oplus \oplus $Pe = 313^{k} \times Ri = 159.3^{k} / 6k$ Battom Chord: movemum member farce = 155.0 ^k Tension KL = 11.67 ft * for aesthetics, use HSST \times 7 Using Table 5-5 of the Steel Manual: HSST \times \times \oplus \oplus $Ph = 355^{k} > 155.0^{k} / 6k$ * HSST \times \times \oplus \oplus $HSST \times$ \times \times \times \times \times \times \times \times \times	KL= 11.67	tt .	
Battom Chord: movimum member farce = 155.0 K Tension KL = 11.07 ft * for aesthetics, use HSS7 ×7 Using Table 5-5 of the Steel Manual: HSS7 ×7 × 14 OR= 255 K > 155.0 K Vok * HSS7 ×7 × 3/16 Woold work. But, HSS7 ×7 × 14 Was chosen for constructionity. Diagonals: maximum member force = 83.8 K Compression KL = 13.33 ft Using Table H-4 of the Steel Manual:	using Table 4	-4 of the steel Man	: 600
maximum member force = 155.0* Tension KL = 11.67 ft * for aesthetics, use HSS7 *7 Using Table 5-5 of the Steel Manual: HSS7 *7 * 14 OPn = 255* > 155.0* Vok * HSS7 *7 * 3/16 Would Work. But, HSS7 *7 * 14 Was Chosen for constructionity. <u>Diagonals</u> : maximum member force = 83.8* Compression KL = 13.33 ft Using Table H-4 of the Steel Manual:	H6S7 ×7	× 4 pp==a1a* >	Ri= 159.3K ∕ok
KL = 11.67 ft * for destricties, use HSS7 *7 Using Table 5-5 of the Steel Manual: HSS7 *7 * M OPn = 255* > 155.6* Vok * HSS7 *7 * ³ /10 Would work. But, HSS7 *7 * ¹ /4 Was Chosen for constructionity. <u>Diagonals</u> : maximum member force = 83.8* Compression KL = 13.33 ft Using Table 4-4 of the Steel Manual:	Batton Chord	<u>}.</u>	
 * for aestheties, use HSS7×7 Using Table 5-5 of the Steel Manual: HSS7×7× ¼ OR= 255* > 155.0* Vok * HOS7×7×3/16 would work. But, HSS7×7× ¼ Was Chosen for constructionity. <u>Diagonals</u>: maximum member force = 83.8* Compression KL = 13.33 ft Using Table H-H of the Steel Manual: 	moximum n	nember force = 155.u	* Tension
Using Table 5-5 of the Steel Manual: HSS7×7× 14 DR= 255* > 155.0× 16k * HSS7×7×3/16 Would Work. But, HSS7×7×1/4 Was Chosen for constructionity. <u>Diagonals</u> : maximum member force = 83.8× Compression KL = 13.33 ft Using Table H-H of the Steel Manual:	KL= 11.67	1 61	
HSS7*7* 4 OPn=255* > 155.0* Vok * HSS7*7* 3/10 would work. But, HSS7*7* 4 Was Chosen for construction 11ty. <u>Diagonals</u> : maximum member force = 83.8* Compression KL = 13.33 ft USING Table H-H of the Steel Manual:	* for aesthet	ics, use HSS7×7	
 * HOST * 7 * 3/16 would work. But, HOST * 7 * 14 Was chosen for construction 1144. <u>Diagonals</u>: maximum member force = 83.8* Compression KL = 13.33 ft Using Table H-4 of the Steel Manual: 	using Table 5	-5 of the Steel Ma	· Laun
Chosen for constructibility. <u>Diagonals</u> : maximum member force = 83.8* Compression KL = 13.33 ft Using Table H-H of the Steel Manual:	H557.7 ×	ц OPn= 255*	> 155.6k Vok
Maximum member force = 83.8* Compression KL = 13.33 ft Using Table H-H of the Steel Manual:	* HOG7×7×3/11 Chosen fr	o would work. But, He or constructibility.	557×7× ^k y was
KL = 13.33 ft Using Table H-H of the Steel Manual	Dicoonals:		
using Table H-H of the Steel Manual.	maximum m	ember force = 83.8* (Compression
5	KL= 13.33	61	
NCC 1411 + AQ - 0594 2294 (using Table	H-4 of the Steel M	vanua):
Hab 444 2 446- 40.6 7 65.6 70k	HSS 4×4	* 1/2 \$Po= 95.8K	> 83.8* Vok
	~		-
~		٩	
~		-	

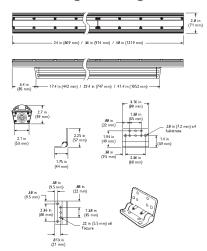
Appendix D.1: Bridge Trusses

Side Trusses

Top Truss

Bottom Truss

Appendix E.1: Luminaire Specification Sheet



Linear exterior LED wall grazing fixture with intelligent color light

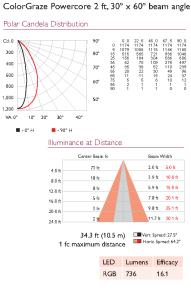
ColorGraze Powercore linear LED lighting fixtures are optimized for surface grazing, wall-wash lighting, and efficient signage illumination. Superior light quality offers uniform beam saturation as close as 6 in (152 mm). A compact, lowprofile design combined with flexible mounting options allows for discreet placement within a wide range of architectural features. Intelligent, controllable fixtures are available in standard fullcolor configurations. Custom configurations with additional beam angles and custom LED channels are also available to support special applications.

- Tailor light output to specific applications Available in three standard lengths, with standard 10° x 60° and 30° x 60° beam angles. Individually addressable 1 ft (305 mm) segments accommodate fine control of color-changing effects and pre-programmed light shows.
- High-performance illumination and beam quality

 ColorGraze Powercore delivers up to 368
 lumens of color-changing light per foot. Superior
 beam quality offers striation-free saturation as
 close as 6 in (152 mm) from fixture placement
 with no visible light scalloping between fixtures.
- Integrates Powercore technology Powercore technology rapidly, efficiently, and accurately controls power output to fixtures directly from line voltage. The Philips Data Enabler Pro merges line voltage with control and delivers them to the fixture over a single standard cable, dramatically simplifying installation and lowering total system cost.
- Versatile installation options Constant torque locking hinges offer simple and consistent position control from various angles. The low-profile aluminum housing accommodates placement within most architectural niches.
- Superior color consistency Optibin, a proprietary binning optimization process developed by Philips Color Kinetics, guarantees consistency of hue across LEDs, fixtures, and manufacturing runs.

- Industry-leading controls ColorGraze Powercore works seamlessly with the complete Philips Color Kinetics line of controllers, including Light System Manager, iPlayer 3, and ColorDial Pro, as well as third-party controllers.
- Support for installations requiring conduit to fixtures — ColorGraze Powercore Conduit fixtures have flying leads and threaded openings for 1/2 in NPT conduit to support installations in North America where conduit is required.
- Custom configurations for special applications — You can create custom configurations by exchanging the LED sources in any channel. Options include seven color temperatures ranging from 2700 K to 6500 K, Royal Blue, Blue, Green, Amber, and Red. Additional beam angles (including $9^{\circ} \times 9^{\circ}, 10^{\circ} \times 30^{\circ},$ and $90^{\circ} \times$ 60°) are also available. Refer to the ColorGraze Powercore Ordering Information specification sheet for complete details.

For detailed product information, please refer to ColorGraze Powercore Product Guide at www.philipscolorkinetics.com/ls/rgb/colorgraze/



Photometrics

Specifications

Due to continuous improvements and innovations, specifications may change without notice.

Item	Specification	2 ft (610 mm)	3 ft (914 mm)	4 ft (1219 mm)
	Lumens*	736	1104	1472
	LED Channels	Red / Green / Blue 6 in (152 mm) to uniform beam saturation		
	Mixing Distance			
	Lumen Maintenance†	100,000 hours L50 @	25° C 90,000 hours	L50 @ 50° C
	Input Voltage	100 – 240 VAC, auto-	switching, 50 / 60 Hz	
Electrical	Power Consumption at full output, steady state	35 W maximum	52.5 W maximum	70 W maximum
Control	Interface	1X or Ethernet) ressable 8- or 16-bit co	ntrol	
Control	Control System	Philips full range of controllers, including Light System Manager, iPlayer 3, and ColorDial Pro, or third-party controllers		
	Dimensions (Height x Width x Depth)	2.7 x 24 x 2.8 in (69 x 610 x 71 mm)	$2.7 \times 36 \times 2.8$ in (69 × 914 × 71 mm)	$2.7 \times 48 \times 2.8$ in (69 x 1219 x 71 mm)
	Weight	4.9 lb (2.2 kg)	8.1 lb (3.6 kg)	10.8 lb (4.9 kg)
	Housing	Extruded anodized al		
	Lens	Clear polycarbonate		
Physical	Fixture Connectors	Integral male / female waterproof connectors		s
.,	Temperature	-40° - 122° F (-40° - 50° C) Operating -4° - 122° F (-20° - 50° C) Startup -40° - 176° F (-40° - 80° C) Storage		
	Humidity	0 – 95%, non-condensing		
	Fixture Run Lengths	To calculate fixture run lengths and total power consumption for your specific installation, download the Configuration Calculator from www.philipscolorkinetics.com/support/install_tool/		
Certification	Certification	UL / cUL, FCC Class A, CE, PSE, CCC		
and Safety	Environment	Dry / Damp / Wet Location, IP66		
Maguna mante complex with IES I M 79 09 tacting procedures				

For lux multiply fc by 10.7

CHROMACORE O P T I B I N POWERCORE CKTECHNOLOGY CKTECHNOLOGY

* Measurements comply with IES LM-79-08 testing procedures. † L50 = 50% lumen maintenance (when light output drops below 50%

Esp = Joy authent maintenance (when high coupling or by Boys) and a solution of the second or finitial output). Ambient luminaire temperatures specified Luman maintenance calculations are based on lifetime prediction graphs supplied by LED source manufacturers. Calculations for white-light LED fixtures are based on measurements that comply with IES LM-80-08 testing procedures. Refer to www.philipscolor/inteits.com/support/appnotes/Im-80-08.pdf for more information.

🀏 (E 😢 🏾

Accessories

Item	Туре	Size	Item Number	Philips 12NC
Leader Cable	UL / cUL	50 ft (15.2 m)	108-000042-00	910503700322
Leader Cable	CE / PSE	50 ft (15.2 m)	108-000042-01	910503700323
		End-to-End	108-000039-00	910503700314
	UL / cUL	1 ft (305 mm)	108-000039-01	910503700315
Jumper Cable		5 ft (1.5 m)	108-000039-02	910503700316
Jumper Cable	CE / PSE	End-to-End	108-000040-00	910503700317
		1 ft (305 mm)	108-000040-01	910503700318
		5 ft (1.5 m)	108-000040-02	910503700319
		1 ft (305 mm)	120-000081-00	910503700745
Glare Shield		2 ft (610 mm)	120-000081-01	910503700746
		3 ft (914 mm)	120-000081-02	910503700747
		4 ft (1.2 m)	120-000081-03	910503700748
Additional Term	inators	Quantity 10	120-000074-00	910503700580
Additional Hing	B	Quantity 1	120-000098-00	910503700772
Use Item Number when ordering in North A			; in North America	

Philips Color Kinetics 3 Burlington Woods Drive Burlington, Massachusetts 01803 USA Tel 888.385.5742 Tel 617.423.9999 Fax 617.423.9998 www.philipscolorkinetics.com

ltem	Туре	Size	Item Number	Philips 12NC
		2 ft (610 mm)	123-000030-00	910503700308
	$10^{\circ} \times 60^{\circ}$	3 ft (914 mm)	123-000030-01	910503700309
ColorGraze		4 ft (1219 mm)	123-000030-02	910503700310
Powercore		2 ft (610 mm)	123-000030-03	91050370031
	$30^{\circ} \times 60^{\circ}$	3 ft (914 mm)	123-000030-04	91050370031
		4 ft (1219 mm)	123-000030-05	91050370031
	10° x 60°	2 ft (610 mm)	123-000020-06	91050370183
ColorGraze		3 ft (914 mm)	123-000020-11	91050370183
Powercore Conduit (UL / cUL only)		4 ft (1219 mm)	123-000020-16	91050370184
	30° × 60°	2 ft (610 mm)	123-000020-08	91050370183
		3 ft (914 mm)	123-000020-13	91050370184
		4 ft (1219 mm)	123-000020-18	91050370184
Data Enabler Pro	3/4 in / 1/2 in NPT (US trade size conduit)		106-000004-00	91050370121
	PG21 / PG13 (metric size conduit)		106-000004-01	91050370121

Fixtures and Data Enabler Pro

Use Item Number when ordering in North America.

Copyright @ 2008 2012 Philips Solid-State Lighting Solutions, Inc. All rights reserved Chromacore, Chromasic, CK, the CK logo, Color Kinetics, the Color Kinetics logo, ColorBlast, ColorBlaze, ColorBurst, eVV Fuse, ColorGraze, ColorPlay, ColorFlasch, WV Reach, eVV Reach, DIMand, Essental/White, eVV, Colori, IColor Cove, IntelWVhite, WV, Reach, eVV Reach, and Powercore are either registered trademarks or trademarks of Philps Solid-State Lighting Solutions, Inc. in the United States and / or other countries. All other brand or product names are trademarks or registered trademarks of their respective owners. Due to continuous improvements and innovations, specifications may change without notice. DAS-000010-02 R09 07-12